論文の概要: Reimagining Target-Aware Molecular Generation through Retrieval-Enhanced Aligned Diffusion
- arxiv url: http://arxiv.org/abs/2506.14488v1
- Date: Tue, 17 Jun 2025 13:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.477867
- Title: Reimagining Target-Aware Molecular Generation through Retrieval-Enhanced Aligned Diffusion
- Title(参考訳): 検索拡張配向拡散によるターゲット認識分子生成の再現
- Authors: Dong Xu, Zhangfan Yang, Ka-chun Wong, Zexuan Zhu, Jiangqiang Li, Junkai Ji,
- Abstract要約: Retrieval-Augmented GenerationとSE(3)-同変拡散モデルとを融合した最初のREADが導入された。
CBGBenchでは非常に競争力があり、最先端のジェネレーティブモデルやネイティブな足場を超越している。
- 参考スコア(独自算出の注目度): 22.204642926984526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breakthroughs in high-accuracy protein structure prediction, such as AlphaFold, have established receptor-based molecule design as a critical driver for rapid early-phase drug discovery. However, most approaches still struggle to balance pocket-specific geometric fit with strict valence and synthetic constraints. To resolve this trade-off, a Retrieval-Enhanced Aligned Diffusion termed READ is introduced, which is the first to merge molecular Retrieval-Augmented Generation with an SE(3)-equivariant diffusion model. Specifically, a contrastively pre-trained encoder aligns atom-level representations during training, then retrieves graph embeddings of pocket-matched scaffolds to guide each reverse-diffusion step at inference. This single mechanism can inject real-world chemical priors exactly where needed, producing valid, diverse, and shape-complementary ligands. Experimental results demonstrate that READ can achieve very competitive performance in CBGBench, surpassing state-of-the-art generative models and even native ligands. That suggests retrieval and diffusion can be co-optimized for faster, more reliable structure-based drug design.
- Abstract(参考訳): AlphaFoldのような高精度なタンパク質構造予測のブレークスルーは、早期の薬物発見に重要な要因として受容体ベースの分子設計を確立している。
しかし、ほとんどのアプローチは、厳密な原子価と合成制約とポケット固有の幾何学的適合のバランスをとるのに依然として苦労している。
このトレードオフを解決するために、Retrieval-Enhanced Aligned Diffusion(READ)と呼ばれるREADが導入された。
具体的には、トレーニング中の原子レベルの表現を対照的に事前訓練したエンコーダが整列し、ポケットマッチングされた足場のグラフ埋め込みを検索して、推論時に各逆拡散ステップを案内する。
この単一のメカニズムは、現実世界の化学的先駆体を必要に応じて注入し、有効で多様な形状の配位子を生成する。
実験結果から,READはCBGBenchにおいて,最先端の生成モデルやネイティブリガンドを超越した,非常に競争力のある性能を達成できることが示された。
つまり、より高速で信頼性の高い構造に基づく薬物設計のために、検索と拡散を共同で最適化できることを示唆している。
関連論文リスト
- Chimera: Accurate retrosynthesis prediction by ensembling models with diverse inductive biases [3.885174353072695]
化学合成の計画と実行は、機能的な小さな分子の発見において大きなボトルネックとなっている。
化学者が反応モデルを構築するためのフレームワークであるChimeraを提案する。
論文 参考訳(メタデータ) (2024-12-06T18:55:19Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - AbDiffuser: Full-Atom Generation of in vitro Functioning Antibodies [44.149969082612486]
AbDiffuserは、抗体3D構造と配列の同変および物理インフォームド拡散モデルである。
我々のアプローチは、ドメイン知識と物理に基づく制約を生かして、タンパク質の拡散を改善する。
数値実験では、AbDiffuserが参照集合の配列と構造を綿密に追跡する抗体を生成する能力を示している。
論文 参考訳(メタデータ) (2023-07-28T11:57:44Z) - LIMO: Latent Inceptionism for Targeted Molecule Generation [14.391216237573369]
本研究は,分子発生を極めて促進する分子発生機構であるLIMO(Latent Inceptionism on Molecules)について述べる。
総合的な実験により、LIMOはベンチマークタスクで競争力を発揮することが示された。
生成した薬物様化合物の1つが、ヒトエストロゲン受容体に対して6~14ドルのK_D$を予測している。
論文 参考訳(メタデータ) (2022-06-17T21:05:58Z) - Torsional Diffusion for Molecular Conformer Generation [28.225704750892795]
ねじれ拡散は、ねじれ角の空間で動作する新しい拡散フレームワークである。
薬物様分子の標準ベンチマークでは、ねじり拡散は優れたコンフォメーラーアンサンブルを生成する。
我々のモデルは、最初の一般化可能なボルツマン生成器を構築するために使われる正確な確率を与える。
論文 参考訳(メタデータ) (2022-06-01T04:30:41Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。