論文の概要: Exploring Diffusion with Test-Time Training on Efficient Image Restoration
- arxiv url: http://arxiv.org/abs/2506.14541v1
- Date: Tue, 17 Jun 2025 14:01:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.506027
- Title: Exploring Diffusion with Test-Time Training on Efficient Image Restoration
- Title(参考訳): 効率的な画像復元のための試験時間トレーニングによる拡散探索
- Authors: Rongchang Lu, Tianduo Luo, Yunzhi Zhang, Conghan Yue, Pei Yang, Guibao Liu, Changyang Gu,
- Abstract要約: DiffRWKVIRは、効率的な拡散を伴うテスト時間トレーニング(TTT)を統合する新しいフレームワークである。
本手法は,ハードウェアの最適化による適応的,高効率な画像復元のための新しいパラダイムを確立する。
- 参考スコア(独自算出の注目度): 6.654407897032842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
- Abstract(参考訳): 画像復元は、非効率な特徴融合、計算ボトルネック、非効率な拡散プロセスなどの課題に直面している。
DiffRWKVIRは,TTT(Test-Time Training)を効率よく統合する新しいフレームワークである。
Omni-Scale 2D State Evolutionは、RWKVの位置依存パラメータ化を階層的多方向2Dスキャンに拡張し、線形複雑性を伴う大域的コンテキスト認識を可能にする。 2) Chunk-Optimized Flash Processingは、連続的なチャンク処理(O(LCd)の複雑さによるチャンク内並列化を3.2倍加速し、逐次的な依存関係とオーバーヘッドを低減し、(3) Pre-Guided Efficient Diffusionは、コンパクトな画像優先表現(IPR)を5~20ステップで抽出し、DiffIRよりも45%高速なトレーニング/推論を実現する。
Set5、Set14、BSD100、Urban100、Places365)、DiffRWKVIRはPSNR、SSIM、LPIPS、効率測定でSwinIR、HAT、MambaIR/v2を上回っている。
本手法は,ハードウェアの最適化による適応的,高効率な画像復元のための新しいパラダイムを確立する。
関連論文リスト
- High-Frequency Prior-Driven Adaptive Masking for Accelerating Image Super-Resolution [87.56382172827526]
高周波領域は再建に最も重要である。
本稿では,アクセラレーションのためのトレーニング不要適応マスキングモジュールを提案する。
本手法は,最先端モデルのFLOPを24~43%削減する。
論文 参考訳(メタデータ) (2025-05-11T13:18:03Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
RATR(Reflectance-Aware Trajectory Refinement)は、イメージの反射成分を用いて教師の軌跡を洗練するための、シンプルで効果的なモジュールである。
textbfReDDiT (textbfDistilled textbfTrajectory) は低照度画像強調(LLIE)に適した効率的で柔軟な蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-10-16T08:07:18Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Gaussian Primitives for Deformable Image Registration [9.184092856125067]
脳MRI、肺CT、心臓MRIのデータセットの実験結果から、GaussianDIRは既存のDIR法よりも精度と効率が優れていることが示されている。
トレーニングなしのアプローチとして、反復的手法は本質的に遅く、一般化不足の限界を超越しているというステレオタイプに挑戦する。
論文 参考訳(メタデータ) (2024-06-05T15:44:54Z) - Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like
Speed [42.861344584752]
従来は検出不要であったLoFTRは、大きな視点の変化とテクスチャ・ポーアのシナリオを扱う際、顕著な整合性を示した。
設計上の選択を再検討し、効率と精度の両面で複数の改善を導出する。
提案手法は,競争力のあるセミセンス・マーカと比較して高い精度を実現することができる。
論文 参考訳(メタデータ) (2024-03-07T18:58:40Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
本稿では, Convolutional Transformer Layer (ConvFormer) を導入し, ConvFormer-based Super-Resolution Network (CFSR) を提案する。
CFSRは畳み込みベースのアプローチとトランスフォーマーベースのアプローチの両方の利点を継承する。
CFSRは計算コストと性能のバランスが最適であることを示す実験である。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
ディープラーニング手法は、前例のない不一致の精度を得ることによって、ステレオマッチングのリーダーボードを支配してきた。
しかし、その推測時間は一般的に540p画像の秒数で遅い。
本研究では,4次元特徴量を必要としないEmphdisplacement-invariant cost moduleを提案する。
論文 参考訳(メタデータ) (2020-12-01T23:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。