Accurate and scalable exchange-correlation with deep learning
- URL: http://arxiv.org/abs/2506.14665v3
- Date: Mon, 23 Jun 2025 17:52:42 GMT
- Title: Accurate and scalable exchange-correlation with deep learning
- Authors: Giulia Luise, Chin-Wei Huang, Thijs Vogels, Derk P. Kooi, Sebastian Ehlert, Stephanie Lanius, Klaas J. H. Giesbertz, Amir Karton, Deniz Gunceler, Megan Stanley, Wessel P. Bruinsma, Lin Huang, Xinran Wei, José Garrido Torres, Abylay Katbashev, Rodrigo Chavez Zavaleta, Bálint Máté, Sékou-Oumar Kaba, Roberto Sordillo, Yingrong Chen, David B. Williams-Young, Christopher M. Bishop, Jan Hermann, Rianne van den Berg, Paola Gori-Giorgi,
- Abstract summary: Skala is a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data.<n>Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT.
- Score: 16.504172910751407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schr\"odinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
Related papers
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
We present finite-range embeddings (FiRE) for accurate large-scale ab-initio electronic structure calculations.<n>FiRE reduces the complexity of neural-network variational Monte Carlo (NN-VMC) by $sim ntextel$, the number of electrons.<n>We validate our method's accuracy on various challenging systems, including biochemical compounds and organometallic compounds.
arXiv Detail & Related papers (2025-04-08T14:28:54Z) - Machine Learning for Improved Density Functional Theory Thermodynamics [0.0]
We present a machine learning (ML) approach to systematically correct intrinsic energy resolution errors in density functional theory calculations.<n>A neural network model has been trained to predict the discrepancy between DFT-calculated and experimentally measured enthalpies for binary and ternary alloys and compounds.<n>We illustrate the effectiveness of this method by applying it to the Al-Ni-Pd and Al-Ni-Ti systems, which are of interest for high-temperature applications in aerospace and protective coatings.
arXiv Detail & Related papers (2025-03-07T15:46:30Z) - On the practical applicability of modern DFT functionals for chemical computations. Case study of DM21 applicability for geometry optimization [55.88862563823878]
This study focuses on evaluating the efficiency of DM21 functional in predicting molecular geometries.<n>We implement geometry optimization in PySCF for the DM21 functional in geometry optimization problem.<n>Our findings reveal both the potential and the current challenges of using neural network functionals for geometry optimization in DFT.
arXiv Detail & Related papers (2025-01-21T14:01:06Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
We propose an approach for the quick and reliable screening of ionic conductors through the analysis of a universal interatomic potential.<n>Eight out of the ten highest-ranked materials are confirmed to be superionic at room temperature in first-principles calculations.<n>Our method achieves a speed-up factor of approximately 50 compared to molecular dynamics driven by a machine-learning potential, and is at least 3,000 times faster compared to first-principles molecular dynamics.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Learning Equivariant Non-Local Electron Density Functionals [51.721844709174206]
We introduce Equivariant Graph Exchange Correlation (EG-XC), a novel non-local XC functional based on equivariant graph neural networks (GNNs)<n>By applying an equivariant GNN on this point cloud, we capture molecular-range interactions in a scalable and accurate manner.<n> EG-XC excels in data efficiency and molecular size extrapolation on QM9, matching force fields trained on 5 times more and larger molecules.
arXiv Detail & Related papers (2024-10-10T14:31:45Z) - Machine learning Hubbard parameters with equivariant neural networks [0.0]
We present a machine learning model based on equivariant neural networks.<n>We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations.<n>Our model achieves mean absolute relative errors of 3% and 5% for Hubbard $U$ and $V$ parameters, respectively.
arXiv Detail & Related papers (2024-06-04T16:21:24Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
We develop a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data.
Tested on hydrocarbon molecules, our model outperforms DFT with the widely-used hybrid and double hybrid functionals in computational costs and prediction accuracy of various quantum chemical properties.
arXiv Detail & Related papers (2024-05-09T19:51:27Z) - Grad DFT: a software library for machine learning enhanced density
functional theory [0.0]
Density functional theory (DFT) stands as a cornerstone in computational quantum chemistry and materials science.
Recent work has begun to explore how machine learning can expand the capabilities of DFT.
We present Grad DFT: a fully differentiable JAX-based DFT library, enabling quick prototyping and experimentation with machine learning-enhanced exchange-correlation energy functionals.
arXiv Detail & Related papers (2023-09-23T00:25:06Z) - Electronic-structure properties from atom-centered predictions of the
electron density [0.0]
electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models.
We propose a gradient-based approach to minimize the loss function of the regression problem in an optimized and highly sparse feature space.
We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom.
arXiv Detail & Related papers (2022-06-28T15:35:55Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
subsystem-DFT (sDFT) can dramatically reduce the computational cost of large-scale electronic structure calculations.
The key ingredients of sDFT are the nonadditive kinetic energy and exchange-correlation functionals which dominate it's accuracy.
eQE 2.0 delivers excellent interaction energies compared to conventional Kohn-Sham DFT and CCSD(T)
arXiv Detail & Related papers (2021-03-12T22:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.