DiFuse-Net: RGB and Dual-Pixel Depth Estimation using Window Bi-directional Parallax Attention and Cross-modal Transfer Learning
- URL: http://arxiv.org/abs/2506.14709v2
- Date: Thu, 31 Jul 2025 19:52:38 GMT
- Title: DiFuse-Net: RGB and Dual-Pixel Depth Estimation using Window Bi-directional Parallax Attention and Cross-modal Transfer Learning
- Authors: Kunal Swami, Debtanu Gupta, Amrit Kumar Muduli, Chirag Jaiswal, Pankaj Kumar Bajpai,
- Abstract summary: DiFuse-Net is a novel decoupled network design for disentangled RGB and DP based depth estimation.<n>WBiPAM captures subtle DP disparity cues unique to smartphone cameras with small aperture.<n>A separate encoder extracts contextual information from the RGB image, and these features are fused to enhance depth prediction.
- Score: 1.456352735394398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth estimation is crucial for intelligent systems, enabling applications from autonomous navigation to augmented reality. While traditional stereo and active depth sensors have limitations in cost, power, and robustness, dual-pixel (DP) technology, ubiquitous in modern cameras, offers a compelling alternative. This paper introduces DiFuse-Net, a novel modality decoupled network design for disentangled RGB and DP based depth estimation. DiFuse-Net features a window bi-directional parallax attention mechanism (WBiPAM) specifically designed to capture the subtle DP disparity cues unique to smartphone cameras with small aperture. A separate encoder extracts contextual information from the RGB image, and these features are fused to enhance depth prediction. We also propose a Cross-modal Transfer Learning (CmTL) mechanism to utilize large-scale RGB-D datasets in the literature to cope with the limitations of obtaining large-scale RGB-DP-D dataset. Our evaluation and comparison of the proposed method demonstrates its superiority over the DP and stereo-based baseline methods. Additionally, we contribute a new, high-quality, real-world RGB-DP-D training dataset, named Dual-Camera Dual-Pixel (DCDP) dataset, created using our novel symmetric stereo camera hardware setup, stereo calibration and rectification protocol, and AI stereo disparity estimation method.
Related papers
- Lightweight RGB-D Salient Object Detection from a Speed-Accuracy Tradeoff Perspective [54.91271106816616]
Current RGB-D methods usually leverage large-scale backbones to improve accuracy but sacrifice efficiency.<n>We propose a Speed-Accuracy Tradeoff Network (SATNet) for Lightweight RGB-D SOD from three fundamental perspectives.<n> Concerning depth quality, we introduce the Depth Anything Model to generate high-quality depth maps.<n>For modality fusion, we propose a Decoupled Attention Module (DAM) to explore the consistency within and between modalities.<n>For feature representation, we develop a Dual Information Representation Module (DIRM) with a bi-directional inverted framework.
arXiv Detail & Related papers (2025-05-07T19:37:20Z) - Confidence-Aware RGB-D Face Recognition via Virtual Depth Synthesis [48.59382455101753]
2D face recognition encounters challenges in unconstrained environments due to varying illumination, occlusion, and pose.
Recent studies focus on RGB-D face recognition to improve robustness by incorporating depth information.
In this work, we first construct a diverse depth dataset generated by 3D Morphable Models for depth model pre-training.
Then, we propose a domain-independent pre-training framework that utilizes readily available pre-trained RGB and depth models to separately perform face recognition without needing additional paired data for retraining.
arXiv Detail & Related papers (2024-03-11T09:12:24Z) - Passive Snapshot Coded Aperture Dual-Pixel RGB-D Imaging [25.851398356458425]
Single-shot 3D sensing is useful in many application areas such as microscopy, medical imaging, surgical navigation, and autonomous driving.
We propose CADS (Coded Aperture Dual-Pixel Sensing), in which we use a coded aperture in the imaging lens along with a DP sensor.
Our resulting CADS imaging system demonstrates improvement of >1.5dB PSNR in all-in-focus (AIF) estimates and 5-6% in depth estimation quality over naive DP sensing.
arXiv Detail & Related papers (2024-02-28T06:45:47Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Self-Aligning Depth-regularized Radiance Fields for Asynchronous RGB-D Sequences [12.799443250845224]
We propose a novel time-pose function, which is an implicit network that maps timestamps to $rm SE(3)$ elements.
Our algorithm consists of three steps: (1) time-pose function fitting, (2) radiance field bootstrapping, (3) joint pose error compensation and radiance field refinement.
We also show qualitatively improved results on a real-world asynchronous RGB-D sequence captured by drone.
arXiv Detail & Related papers (2022-11-14T15:37:27Z) - DCANet: Differential Convolution Attention Network for RGB-D Semantic
Segmentation [2.2032272277334375]
We propose a pixel differential convolution attention (DCA) module to consider geometric information and local-range correlations for depth data.
We extend DCA to ensemble differential convolution attention (EDCA) which propagates long-range contextual dependencies.
A two-branch network built with DCA and EDCA, called Differential Convolutional Network (DCANet), is proposed to fuse local and global information of two-modal data.
arXiv Detail & Related papers (2022-10-13T05:17:34Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-10-06T11:59:19Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
In this work, we propose Dual Swin-Transformer based Mutual Interactive Network.
We adopt Swin-Transformer as the feature extractor for both RGB and depth modality to model the long-range dependencies in visual inputs.
Comprehensive experiments on five standard RGB-D SOD benchmark datasets demonstrate the superiority of the proposed DTMINet method.
arXiv Detail & Related papers (2022-06-07T08:35:41Z) - Unsupervised Visible-light Images Guided Cross-Spectrum Depth Estimation
from Dual-Modality Cameras [33.77748026254935]
Cross-spectrum depth estimation aims to provide a depth map in all illumination conditions with a pair of dual-spectrum images.
In this paper, we propose an unsupervised visible-light image guided cross-spectrum (i.e., thermal and visible-light, TIR-VIS in short) depth estimation framework.
Our method achieves better performance than the compared existing methods.
arXiv Detail & Related papers (2022-04-30T12:58:35Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.