ASCD: Attention-Steerable Contrastive Decoding for Reducing Hallucination in MLLM
- URL: http://arxiv.org/abs/2506.14766v1
- Date: Tue, 17 Jun 2025 17:58:11 GMT
- Title: ASCD: Attention-Steerable Contrastive Decoding for Reducing Hallucination in MLLM
- Authors: Yujun Wang, Jinhe Bi, Yunpu Ma, Soeren Pirk,
- Abstract summary: Multimodal Large Language Model (MLLM) often suffer from hallucinations.<n>They over-rely on partial cues and generate incorrect responses.<n>Recent methods like Visual Contrastive Decoding (VCD) and Instruction Contrastive Decoding (ICD) have been proposed to mitigate hallucinations.
- Score: 12.091189146069198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Model (MLLM) often suffer from hallucinations. They over-rely on partial cues and generate incorrect responses. Recently, methods like Visual Contrastive Decoding (VCD) and Instruction Contrastive Decoding (ICD) have been proposed to mitigate hallucinations by contrasting predictions from perturbed or negatively prefixed inputs against original outputs. In this work, we uncover that methods like VCD and ICD fundamentally influence internal attention dynamics of the model. This observation suggests that their effectiveness may not stem merely from surface-level modifications to logits but from deeper shifts in attention distribution. Inspired by this insight, we propose an attention-steerable contrastive decoding framework that directly intervenes in attention mechanisms of the model to offer a more principled approach to mitigating hallucinations. Our experiments across multiple MLLM architectures and diverse decoding methods demonstrate that our approach significantly reduces hallucinations and improves the performance on benchmarks such as POPE, CHAIR, and MMHal-Bench, while simultaneously enhancing performance on standard VQA benchmarks.
Related papers
- Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
Efficient Contrastive Decoding (ECD) is a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time.<n>Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
arXiv Detail & Related papers (2025-04-16T14:50:25Z) - Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs [62.9348974370985]
We propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost.<n>Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens.<n>Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors.
arXiv Detail & Related papers (2025-03-11T11:52:37Z) - PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)<n>HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.<n>PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
arXiv Detail & Related papers (2025-03-09T07:07:03Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.<n>LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.<n>We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation [50.73561815838431]
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena.<n>We present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers.<n>Motivated by this, we propose a novel dynamic correction decoding method for MLLMs DeCo, which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits.
arXiv Detail & Related papers (2024-10-15T16:57:44Z) - Mitigating Modality Prior-Induced Hallucinations in Multimodal Large Language Models via Deciphering Attention Causality [20.41579586967349]
Multimodal Large Language Models (MLLMs) have emerged as a central focus in both industry and academia.<n>MLLMs often suffer from biases introduced by visual and language priors, which can lead to multimodal hallucination.<n>We propose a causal inference framework termed CausalMM that applies structural causal modeling to MLLMs.
arXiv Detail & Related papers (2024-10-07T06:45:22Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.