論文の概要: See What I Mean? CUE: A Cognitive Model of Understanding Explanations
- arxiv url: http://arxiv.org/abs/2506.14775v1
- Date: Fri, 09 May 2025 22:05:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.662621
- Title: See What I Mean? CUE: A Cognitive Model of Understanding Explanations
- Title(参考訳): 意味は何か? CUE:説明理解の認知モデル
- Authors: Tobias Labarta, Nhi Hoang, Katharina Weitz, Wojciech Samek, Sebastian Lapuschkin, Leander Weber,
- Abstract要約: 本稿では,説明の認知的理解モデルを提案する。
調査では、視覚障害者のタスクパフォーマンスに匹敵するが、信頼性や努力は低いことがわかった。
我々は,(1)説明理解のための形式化された認知モデル,(2)人間中心の説明特性の総合的定義,(3)アクセシブルなユーザカスタマイズ型XAIを動機づけた実証的証拠を提示する。
- 参考スコア(独自算出の注目度): 12.230507748153459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning systems increasingly inform critical decisions, the need for human-understandable explanations grows. Current evaluations of Explainable AI (XAI) often prioritize technical fidelity over cognitive accessibility which critically affects users, in particular those with visual impairments. We propose CUE, a model for Cognitive Understanding of Explanations, linking explanation properties to cognitive sub-processes: legibility (perception), readability (comprehension), and interpretability (interpretation). In a study (N=455) testing heatmaps with varying colormaps (BWR, Cividis, Coolwarm), we found comparable task performance but lower confidence/effort for visually impaired users. Unlike expected, these gaps were not mitigated and sometimes worsened by accessibility-focused color maps like Cividis. These results challenge assumptions about perceptual optimization and support the need for adaptive XAI interfaces. They also validate CUE by demonstrating that altering explanation legibility affects understandability. We contribute: (1) a formalized cognitive model for explanation understanding, (2) an integrated definition of human-centered explanation properties, and (3) empirical evidence motivating accessible, user-tailored XAI.
- Abstract(参考訳): 機械学習システムがますます重要な決定を下すにつれて、人間に理解可能な説明の必要性が高まっている。
説明可能なAI(XAI)の現在の評価は、認知的アクセシビリティよりも技術的忠実さを優先することが多い。
本稿では,説明の認知的理解のためのモデルであるCUEを提案し,その特徴を認知的サブプロセス(可視性(パーセプション),可読性(理解性),解釈可能性(解釈性)とリンクする。
異なるカラーマップ (BWR, Cividis, Coolwarm) を持つヒートマップ(N=455) のテストでは, 視覚障害のあるユーザに対して, 同等のタスク性能を示した。
予想とは違って、これらのギャップはCividisのようなアクセシビリティにフォーカスしたカラーマップによって緩和されず、時には悪化することもあった。
これらの結果は、知覚的最適化に関する仮定に挑戦し、適応型XAIインタフェースの必要性をサポートする。
また、説明の正当性を変えることが理解可能性に影響を及ぼすことを示すことでCUEを検証する。
我々は,(1)説明理解のための形式化された認知モデル,(2)人間中心の説明特性の総合的定義,(3)アクセシブルなユーザカスタマイズ型XAIを動機づけた実証的証拠を提示する。
関連論文リスト
- An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - Fool Me Once? Contrasting Textual and Visual Explanations in a Clinical Decision-Support Setting [43.110187812734864]
視覚的説明(可用性マップ)、自然言語の説明、両方のモダリティの組み合わせの3種類の説明を評価した。
テキストに基づく説明は、高い信頼度をもたらすことが分かっており、従順マップと組み合わせることで軽減される。
また、説明の質、すなわち、それがどれだけ事実的に正しい情報であり、それがAIの正しさとどの程度一致しているかが、異なる説明タイプの有用性に大きく影響していることも観察します。
論文 参考訳(メタデータ) (2024-10-16T06:43:02Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Don't Explain without Verifying Veracity: An Evaluation of Explainable
AI with Video Activity Recognition [24.10997778856368]
本稿では,知的システムにおけるユーザパフォーマンスと合意の妥当性がいかに影響するかを考察する。
ビデオレビューと問合せ作業における説明精度のばらつきを比較した。
その結果,信頼性の低い説明がユーザパフォーマンスと合意を著しく低下させることが示唆された。
論文 参考訳(メタデータ) (2020-05-05T17:06:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。