論文の概要: Predicting Onflow Parameters Using Transfer Learning for Domain and Task Adaptation
- arxiv url: http://arxiv.org/abs/2506.14784v1
- Date: Mon, 26 May 2025 13:39:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.671593
- Title: Predicting Onflow Parameters Using Transfer Learning for Domain and Task Adaptation
- Title(参考訳): ドメインとタスク適応のためのトランスファーラーニングを用いたオンフローパラメータの予測
- Authors: Emre Yilmaz, Philipp Bekemeyer,
- Abstract要約: 本稿では,オンフローパラメータ,特に攻撃角度とオンフロー速度を予測するための転送学習手法を提案する。
結果は、データ分散の変更、ドメイン拡張、タスク更新への適応に対するアプローチの可能性の実証に成功している。
- 参考スコア(独自算出の注目度): 4.267911393791743
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Determining onflow parameters is crucial from the perspectives of wind tunnel testing and regular flight and wind turbine operations. These parameters have traditionally been predicted via direct measurements which might lead to challenges in case of sensor faults. Alternatively, a data-driven prediction model based on surface pressure data can be used to determine these parameters. It is essential that such predictors achieve close to real-time learning as dictated by practical applications such as monitoring wind tunnel operations or learning the variations in aerodynamic performance of aerospace and wind energy systems. To overcome the challenges caused by changes in the data distribution as well as in adapting to a new prediction task, we propose a transfer learning methodology to predict the onflow parameters, specifically angle of attack and onflow speed. It requires first training a convolutional neural network (ConvNet) model offline for the core prediction task, then freezing the weights of this model except the selected layers preceding the output node, and finally executing transfer learning by retraining these layers. A demonstration of this approach is provided using steady CFD analysis data for an airfoil for i) domain adaptation where transfer learning is performed with data from a target domain having different data distribution than the source domain and ii) task adaptation where the prediction task is changed. Further exploration on the influence of noisy data, performance on an extended domain, and trade studies varying sampling sizes and architectures are provided. Results successfully demonstrate the potential of the approach for adaptation to changing data distribution, domain extension, and task update while the application for noisy data is concluded to be not as effective.
- Abstract(参考訳): オンフローパラメータの決定は、風洞試験と定期飛行および風力タービンの運用の観点から重要である。
これらのパラメータは従来から直接測定によって予測され、センサ故障の際の課題に繋がる可能性がある。
あるいは、表面圧力データに基づくデータ駆動予測モデルを用いてこれらのパラメータを決定できる。
このような予測器は、風洞操作の監視や、航空宇宙や風力エネルギーシステムの空力性能の変動の学習といった実践的な応用によって予測された、リアルタイムに近い学習を実現することが不可欠である。
そこで本研究では,データ分散の変化に伴う課題を克服し,新たな予測課題に適応するために,オンフローパラメータ,特に攻撃角度,オンフロー速度を予測するトランスファー学習手法を提案する。
まず、コア予測タスクのために畳み込みニューラルネットワーク(ConvNet)モデルをオフラインでトレーニングし、次に出力ノードの前に選択されたレイヤを除くモデルの重みを凍結し、最終的にこれらのレイヤをトレーニングすることで転送学習を実行する必要がある。
この手法の実証は、航空機用翼の安定したCFD解析データを用いて提供される。
一 ソースドメインと異なるデータ分布を有する対象ドメインのデータを用いて転送学習を行う領域適応及び
二 予測タスクを変更するタスク適応
さらに、ノイズデータの影響、拡張ドメインの性能、および様々なサンプリングサイズとアーキテクチャに関する貿易研究について調べる。
その結果、ノイズの多いデータに対するアプリケーションは、それほど効果がないと結論される一方で、データ分散、ドメイン拡張、タスク更新の変更に対するアプローチの可能性を実証できた。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - A Causally Informed Pretraining Approach for Multimodal Foundation Models: Applications in Remote Sensing [16.824262496666893]
大規模データを用いた基礎モデルの事前学習のための強力なパラダイムとして,自己教師型学習が登場している。
条件生成タスクとして予測をモデル化する新しい事前学習タスクであるCausally Informed Variable-Step Forecasting (CI-VSF)を提案する。
このような事前学習は,予測と予測の両方に微調整を施すと,性能が向上することを示す。
論文 参考訳(メタデータ) (2024-07-29T02:49:55Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
テスト時間適応(TTA)は、ソースデータへのアクセスや追加のトレーニングなしに、推論段階でラベル付けされていないデータに事前訓練されたモデルの直接適応を可能にする。
本稿では,3つの領域シフトパラダイムを提案する。光グラムから空気中LiDAR,空気中LiDAR,合成-移動レーザー走査である。
実験の結果,分類精度は最大20%mIoUに向上し,他の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-08T15:40:28Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
本稿では,時空間交通流予測問題に対するオンラインテスト時間適応手法の最初の研究を行う。
本稿では,直列分解法(ADCSD)による適応二重補正法を提案する。
提案手法では,テストフェーズ中にトレーニングされたモデル全体を微調整する代わりに,トレーニングされたモデルの後,ライトネットワークをアタッチし,データ入力が観測されるたびに,ライトネットワークのみをテストプロセスで微調整する。
論文 参考訳(メタデータ) (2024-01-08T12:04:39Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) はサンプルベースのフレームワークであり、学習プロセスを短い部分的軌道セグメントに分解することができる。
生成フローネットワーク(GFlowNets)のための理論から着想を得た。
論文 参考訳(メタデータ) (2023-10-04T09:39:05Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
本稿では,交通流予測のための深層学習(DL)モデルのための交通流物理に基づく変換機能を提案する。
この変換は、Newellがターゲット位置におけるトラフィックフローの非混雑フィルタを組み込んだもので、モデルがシステムのより広範なダイナミクスを学習できるようにする。
私たちのフレームワークの重要な利点は、データが利用できない新しい場所に転送できることです。
論文 参考訳(メタデータ) (2023-07-12T06:31:43Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。