論文の概要: ss-Mamba: Semantic-Spline Selective State-Space Model
- arxiv url: http://arxiv.org/abs/2506.14802v1
- Date: Tue, 03 Jun 2025 03:26:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-22 23:32:14.688834
- Title: ss-Mamba: Semantic-Spline Selective State-Space Model
- Title(参考訳): ss-Mamba:Semantic-Spline Selective State-Space Model
- Authors: Zuochen Ye,
- Abstract要約: ss-Mambaは、セマンティック・アウェアの埋め込みと適応スプラインベースの時間符号化を統合することで時系列予測を強化する新しい基礎モデルである。
ss-Mambaは,時系列予測における従来のトランスフォーマーモデルに代わる汎用的で効率的な代替手段として,優れた精度,堅牢性,解釈性を提供することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose ss-Mamba, a novel foundation model that enhances time series forecasting by integrating semantic-aware embeddings and adaptive spline-based temporal encoding within a selective state-space modeling framework. Building upon the recent success of Transformer architectures, ss-Mamba adopts the Mamba selective state space model as an efficient alternative that achieves comparable performance while significantly reducing computational complexity from quadratic to linear time. Semantic index embeddings, initialized from pretrained language models, allow effective generalization to previously unseen series through meaningful semantic priors. Additionally, spline-based Kolmogorov-Arnold Networks (KAN) dynamically and interpretably capture complex seasonalities and non-stationary temporal effects, providing a powerful enhancement over conventional temporal feature encodings. Extensive experimental evaluations confirm that ss-Mamba delivers superior accuracy, robustness, and interpretability, demonstrating its capability as a versatile and computationally efficient alternative to traditional Transformer-based models in time-series forecasting.
- Abstract(参考訳): 選択状態空間モデリングフレームワーク内にセマンティック・アウェア・埋め込みと適応スプラインに基づく時間符号化を統合することで時系列予測を強化する新しい基礎モデルであるss-Mambaを提案する。
近年のTransformerアーキテクチャの成功に基づいて、ss-Mambaは2次時間から線形時間までの計算複雑性を著しく低減しつつ、同等のパフォーマンスを達成するための効率的な代替手段として、Mamba選択状態空間モデルを採用している。
事前訓練された言語モデルから初期化されたセマンティックインデックスの埋め込みは、意味のあるセマンティック先行を通じて、前もって見つからない系列を効果的に一般化することができる。
さらに、スプラインベースのコルモゴロフ・アルノルドネットワーク(KAN)は、複雑な季節性や非定常的時間効果を動的かつ解釈可能とし、従来の時間的特徴符号化よりも強力な拡張を提供する。
大規模な実験的評価により、ss-Mambaはより優れた精度、堅牢性、解釈可能性を提供し、時系列予測において従来のTransformerベースのモデルに代わる汎用的で計算効率の良い代替品としての機能を示す。
関連論文リスト
- MesaNet: Sequence Modeling by Locally Optimal Test-Time Training [67.45211108321203]
我々は,最近提案されたMesa層の数値的に安定かつチャンクワイズ可能な並列化版を導入する。
テストタイムの最適トレーニングにより、従来のRNNよりも言語モデリングの難易度が低く、ダウンストリームベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2025-06-05T16:50:23Z) - LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction [0.0]
従来の機械学習モデルは、制限されたモデル容量に制約された予測タスクに制限を示す。
我々は、学習可能なパッチセグメンテーションと動的ウェーブレット畳み込みモジュールによる時間的シーケンスモデリングを強化する新しいフレームワークLLM4FTS$を提案する。
実世界の金融データセットの実験は、このフレームワークの有効性を実証し、複雑な市場パターンを捉える上で優れたパフォーマンスを示し、ストックリターン予測の最先端結果を達成する。
論文 参考訳(メタデータ) (2025-05-05T06:48:34Z) - Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting [0.8568432695376288]
本稿では、複雑な時間的データを予測するための高度なフェデレートラーニング(FL)フレームワークを提案し、最近の最先端モデルを改善した。
結果として生じるアーキテクチャは、様々な予測アプリケーションで複雑な時間パターンを扱う能力を大幅に改善します。
提案手法の有効性は,都市部におけるマルチモーダル交通需要予測のためのパブリックデータセットや,Origin-Destination (OD) 行列予測のためのプライベートデータセットなど,実世界の応用に関する広範な実験を通じて実証される。
論文 参考訳(メタデータ) (2025-03-06T15:16:57Z) - Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
ラテント思考モデル(LTM)は、ラテント空間における明示的な事前モデルに従う明示的なラテント思考ベクトルを包含する。
LTMは自己回帰モデルや離散拡散モデルよりも優れたサンプルおよびパラメータ効率を示す。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Self-Reflective Variational Autoencoder [21.054722609128525]
変分オートエンコーダ(VAE)は潜在変数生成モデルを学習するための強力なフレームワークである。
自己回帰推論(self-reflective inference)と呼ばれるソリューションを導入します。
実験では, 後部と後部を正確に一致させることの明確な利点を実証的に示す。
論文 参考訳(メタデータ) (2020-07-10T05:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。