論文の概要: LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction
- arxiv url: http://arxiv.org/abs/2505.02880v1
- Date: Mon, 05 May 2025 06:48:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.058541
- Title: LLM4FTS: Enhancing Large Language Models for Financial Time Series Prediction
- Title(参考訳): LLM4FTS:金融時系列予測のための大規模言語モデルの強化
- Authors: Zian Liu, Renjun Jia,
- Abstract要約: 従来の機械学習モデルは、制限されたモデル容量に制約された予測タスクに制限を示す。
我々は、学習可能なパッチセグメンテーションと動的ウェーブレット畳み込みモジュールによる時間的シーケンスモデリングを強化する新しいフレームワークLLM4FTS$を提案する。
実世界の金融データセットの実験は、このフレームワークの有効性を実証し、複雑な市場パターンを捉える上で優れたパフォーマンスを示し、ストックリターン予測の最先端結果を達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting financial time series presents significant challenges due to inherent low signal-to-noise ratios and intricate temporal patterns. Traditional machine learning models exhibit limitations in this forecasting task constrained by their restricted model capacity. Recent advances in large language models (LLMs), with their greatly expanded parameter spaces, demonstrate promising potential for modeling complex dependencies in temporal sequences. However, existing LLM-based approaches typically focus on fixed-length patch analysis due to the Transformer architecture, ignoring market data's multi-scale pattern characteristics. In this study, we propose $LLM4FTS$, a novel framework that enhances LLM capabilities for temporal sequence modeling through learnable patch segmentation and dynamic wavelet convolution modules. Specifically,we first employ K-means++ clustering based on DTW distance to identify scale-invariant patterns in market data. Building upon pattern recognition results, we introduce adaptive patch segmentation that partitions temporal sequences while preserving maximal pattern integrity. To accommodate time-varying frequency characteristics, we devise a dynamic wavelet convolution module that emulates discrete wavelet transformation with enhanced flexibility in capturing time-frequency features. These three modules work together to improve large language model's ability to handle scale-invariant patterns in financial time series. Extensive experiments on real-world financial datasets substantiate the framework's efficacy, demonstrating superior performance in capturing complex market patterns and achieving state-of-the-art results in stock return prediction. The successful deployment in practical trading systems confirms its real-world applicability, representing a significant advancement in LLM applications for financial forecasting.
- Abstract(参考訳): 財務時系列の予測は、信号と雑音の比が本質的に低く、時間パターンが複雑であるため、重大な課題を呈する。
従来の機械学習モデルは、制限されたモデル容量に制約された予測タスクに制限を示す。
大規模言語モデル(LLM)の最近の進歩は、その拡張されたパラメータ空間とともに、時間的シーケンスにおける複雑な依存関係をモデル化するための有望な可能性を示している。
しかし、既存のLCMベースのアプローチは一般的に、Transformerアーキテクチャによる固定長のパッチ解析に重点を置いており、市場データのマルチスケールパターンの特徴を無視している。
本研究では,学習可能なパッチセグメンテーションと動的ウェーブレット畳み込みモジュールによる時間的シーケンスモデリングのためのLLM機能を強化する新しいフレームワークであるLLM4FTS$を提案する。
具体的には、DTW距離に基づくK-means++クラスタリングを用いて、市場データのスケール不変パターンを識別する。
パターン認識の結果に基づいて,最大パターン整合性を保ちながら時間的シーケンスを分割する適応パッチセグメンテーションを導入する。
時間変動周波数特性に対応するため,離散ウェーブレット変換をエミュレートする動的ウェーブレット畳み込みモジュールを考案した。
これら3つのモジュールは、金融時系列でスケール不変パターンを扱う大きな言語モデルの能力を改善するために協力する。
実世界の金融データセットに関する大規模な実験は、このフレームワークの有効性を裏付け、複雑な市場パターンを捉える上で優れたパフォーマンスを示し、ストックリターン予測の最先端結果を達成する。
実用的なトレーディングシステムへの展開の成功は、その現実的な適用性を確認し、金融予測のためのLLM応用の大幅な進歩を示している。
関連論文リスト
- Adapting Large Language Models for Time Series Modeling via a Novel Parameter-efficient Adaptation Method [9.412920379798928]
時系列モデリングは多くの実世界のアプリケーションにおいて重要な意味を持つ。
我々は時系列と自然言語のモダリティを調整するためのTime-LlaMAフレームワークを提案する。
本稿では,提案手法がSOTA(State-of-the-art)性能を実現することを示す。
論文 参考訳(メタデータ) (2025-02-19T13:52:26Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - LLM-TS Integrator: Integrating LLM for Enhanced Time Series Modeling [5.853711797849859]
天気予報や異常検出などの動的システムでは時系列モデリングが不可欠である。
近年,大規模言語モデル(LLM)をTSモデリングに利用し,その強力なパターン認識機能を活用している。
論文 参考訳(メタデータ) (2024-10-21T20:29:46Z) - UmambaTSF: A U-shaped Multi-Scale Long-Term Time Series Forecasting Method Using Mamba [7.594115034632109]
本稿では,新しい時系列予測フレームワークであるUmambaTSFを提案する。
U字型エンコーダ・デコーダ多層パーセプトロン(MLP)のマルチスケール特徴抽出機能とMambaのロングシーケンス表現を統合する。
UmambaTSFは、広く使用されているベンチマークデータセットで最先端のパフォーマンスと優れた汎用性を達成する。
論文 参考訳(メタデータ) (2024-10-15T04:56:43Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。