Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
- URL: http://arxiv.org/abs/2506.14831v1
- Date: Fri, 13 Jun 2025 23:03:43 GMT
- Title: Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
- Authors: Céline Finet, Stephane Da Silva Martins, Jean-Bernard Hayet, Ioannis Karamouzas, Javad Amirian, Sylvie Le Hégarat-Mascle, Julien Pettré, Emanuel Aldea,
- Abstract summary: This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction.<n>We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies.<n>We highlight key challenges and future research directions in the field of multi-agent HTP.
- Score: 6.977242051969165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as autonomous navigation and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2024. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction [21.780343024406285]
SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups.<n>Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data.<n>A global trajectory is introduced to enable more accurate and efficient parallel predictions.
arXiv Detail & Related papers (2025-04-22T06:14:49Z) - A Comprehensive Survey of Direct Preference Optimization: Datasets, Theories, Variants, and Applications [52.42860559005861]
Direct Preference Optimization (DPO) has emerged as a promising approach for alignment.
Despite DPO's various advancements and inherent limitations, an in-depth review of these aspects is currently lacking in the literature.
arXiv Detail & Related papers (2024-10-21T02:27:24Z) - Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - A Neuro-Symbolic Approach for Enhanced Human Motion Prediction [5.742409080817885]
We propose a neuro-symbolic approach for human motion prediction (NeuroSyM)
NeuroSyM weights differently the interactions in the neighbourhood by leveraging an intuitive technique for spatial representation called qualitative Trajectory Calculus (QTC)
Experimental results show that the NeuroSyM approach outperforms in most cases the baseline architectures in terms of prediction accuracy.
arXiv Detail & Related papers (2023-04-23T20:11:40Z) - Vision-based Multi-future Trajectory Prediction: A Survey [12.966919153075143]
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems.<n>Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction.<n>To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied.
arXiv Detail & Related papers (2023-02-21T06:11:08Z) - LatentFormer: Multi-Agent Transformer-Based Interaction Modeling and
Trajectory Prediction [12.84508682310717]
We propose LatentFormer, a transformer-based model for predicting future vehicle trajectories.
We evaluate the proposed method on the nuScenes benchmark dataset and show that our approach achieves state-of-the-art performance and improves upon trajectory metrics by up to 40%.
arXiv Detail & Related papers (2022-03-03T17:44:58Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.