Beyond Force Metrics: Pre-Training MLFFs for Stable MD Simulations
- URL: http://arxiv.org/abs/2506.14850v1
- Date: Tue, 17 Jun 2025 00:58:56 GMT
- Title: Beyond Force Metrics: Pre-Training MLFFs for Stable MD Simulations
- Authors: Shagun Maheshwari, Janghoon Ock, Adeesh Kolluru, Amir Barati Farimani, John R. Kitchin,
- Abstract summary: Machine-learning force fields (MLFFs) have emerged as a promising solution for speeding up ab initio molecular dynamics (MD) simulations.<n>In this work, we employ GemNet-T, a graph neural network model, as an MLFF and investigate two training strategies.<n>We find that lower force errors do not necessarily guarantee stable MD simulations.
- Score: 5.913538953257869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learning force fields (MLFFs) have emerged as a promising solution for speeding up ab initio molecular dynamics (MD) simulations, where accurate force predictions are critical but often computationally expensive. In this work, we employ GemNet-T, a graph neural network model, as an MLFF and investigate two training strategies: (1) direct training on MD17 (10K samples) without pre-training, and (2) pre-training on the large-scale OC20 dataset followed by fine-tuning on MD17 (10K). While both approaches achieve low force mean absolute errors (MAEs), reaching 5 meV/A per atom, we find that lower force errors do not necessarily guarantee stable MD simulations. Notably, the pre-trained GemNet-T model yields significantly improved simulation stability, sustaining trajectories up to three times longer than the model trained from scratch. These findings underscore the value of pre-training on large, diverse datasets to capture complex molecular interactions and highlight that force MAE alone is not always a sufficient metric of MD simulation stability.
Related papers
- FORT: Forward-Only Regression Training of Normalizing Flows [85.66894616735752]
We revisit classical normalizing flows as one-step generative models with exact likelihoods.<n>We propose a novel, scalable training objective that does not require computing the expensive change of variable formula used in conventional maximum likelihood training.
arXiv Detail & Related papers (2025-06-01T20:32:27Z) - Improving the Stability of GNN Force Field Models by Reducing Feature Correlation [9.546348080237747]
We propose a feature correlation based method for GNNFF models to enhance the stability of MD simulation.<n>We show our method can significantly improve stability for GNNFF models especially in out-of-distribution data with less than 3% computational overhead.
arXiv Detail & Related papers (2025-02-18T05:18:22Z) - Physics-Informed Weakly Supervised Learning for Interatomic Potentials [17.165117198519248]
We introduce a physics-informed, weakly supervised approach for training machine-learned interatomic potentials (MLIPs)<n>We demonstrate reduced energy and force errors -- often lower by a factor of two -- for various baseline models and benchmark data sets.<n>Our approach improves the fine-tuning of foundation models on sparse, highly accurate ab initio data.
arXiv Detail & Related papers (2024-07-23T12:49:04Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
We present a more comprehensive set of benchmarking tests for evaluating the transferability of machine-learned force fields.
We use a graph neural network (GNN)-based force field coupled with the OpenMM package to carry out MD simulations for Argon.
Our results show that the model can accurately capture the behavior of the solid phase only when the configurations from the solid phase are included in the training dataset.
arXiv Detail & Related papers (2023-01-10T00:25:48Z) - Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations [5.138982355658199]
Molecular dynamics (MD) simulation techniques are widely used for various natural science applications.
We benchmark a collection of state-of-the-art (SOTA) ML FF models and illustrate, in particular, how the commonly benchmarked force accuracy is not well aligned with relevant simulation metrics.
arXiv Detail & Related papers (2022-10-13T17:59:03Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.