Foundation Artificial Intelligence Models for Health Recognition Using Face Photographs (FAHR-Face)
- URL: http://arxiv.org/abs/2506.14909v1
- Date: Tue, 17 Jun 2025 18:28:11 GMT
- Title: Foundation Artificial Intelligence Models for Health Recognition Using Face Photographs (FAHR-Face)
- Authors: Fridolin Haugg, Grace Lee, John He, Leonard Nürnberg, Dennis Bontempi, Danielle S. Bitterman, Paul Catalano, Vasco Prudente, Dmitrii Glubokov, Andrew Warrington, Suraj Pai, Dirk De Ruysscher, Christian Guthier, Benjamin H. Kann, Vadim N. Gladyshev, Hugo JWL Aerts, Raymond H. Mak,
- Abstract summary: We built FAHR-Face, a foundation model on >40 million facial images.<n>For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5.1 years on public datasets.<n>FAHR-FaceSurvival demonstrated robust prediction of mortality.
- Score: 3.0938610789627923
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: Facial appearance offers a noninvasive window into health. We built FAHR-Face, a foundation model trained on >40 million facial images and fine-tuned it for two distinct tasks: biological age estimation (FAHR-FaceAge) and survival risk prediction (FAHR-FaceSurvival). Methods: FAHR-FaceAge underwent a two-stage, age-balanced fine-tuning on 749,935 public images; FAHR-FaceSurvival was fine-tuned on 34,389 photos of cancer patients. Model robustness (cosmetic surgery, makeup, pose, lighting) and independence (saliency mapping) was tested extensively. Both models were clinically tested in two independent cancer patient datasets with survival analyzed by multivariable Cox models and adjusted for clinical prognostic factors. Findings: For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5.1 years on public datasets, outperforming benchmark models and maintaining accuracy across the full human lifespan. In cancer patients, FAHR-FaceAge outperformed a prior facial age estimation model in survival prognostication. FAHR-FaceSurvival demonstrated robust prediction of mortality, and the highest-risk quartile had more than triple the mortality of the lowest (adjusted hazard ratio 3.22; P<0.001). These findings were validated in the independent cohort and both models showed generalizability across age, sex, race and cancer subgroups. The two algorithms provided distinct, complementary prognostic information; saliency mapping revealed each model relied on distinct facial regions. The combination of FAHR-FaceAge and FAHR-FaceSurvival improved prognostic accuracy. Interpretation: A single foundation model can generate inexpensive, scalable facial biomarkers that capture both biological ageing and disease-related mortality risk. The foundation model enabled effective training using relatively small clinical datasets.
Related papers
- Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus [0.0]
This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years.<n>Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk.
arXiv Detail & Related papers (2025-07-31T12:23:10Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Towards a Transportable Causal Network Model Based on Observational
Healthcare Data [1.333879175460266]
We propose a novel approach that combines selection diagrams, missingness graphs, causal discovery and prior knowledge into a single graphical model.
We learn this model from data comprising two different cohorts of patients.
The resulting causal network model is validated by expert clinicians in terms of risk assessment, accuracy and explainability.
arXiv Detail & Related papers (2023-11-13T13:23:31Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Assessing the Performance of Automated Prediction and Ranking of Patient
Age from Chest X-rays Against Clinicians [4.795478287106675]
Deep learning has been demonstrated to allow the accurate estimation of patient age from chest X-rays.
We present a novel comparative study of the performance of radiologists versus state-of-the-art deep learning models.
We train our models with a heterogeneous database of 1.8M chest X-rays with ground truth patient ages and investigate the limitations on model accuracy.
arXiv Detail & Related papers (2022-07-04T10:09:48Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
We propose predictive models that estimate GBM patients' health status of one-year after treatments.
We used total of 467 GBM patients' clinical profile consists of 13 features and two follow-up dates.
Our machine learning models suggest that the top three prognostic factors for GBM patient survival were MGMT gene promoter, the extent of resection, and age.
arXiv Detail & Related papers (2021-08-30T07:56:34Z) - EPIC-Survival: End-to-end Part Inferred Clustering for Survival
Analysis, Featuring Prognostic Stratification Boosting [0.0]
EPIC-Survival bridges encoding and aggregation into an end-to-end survival modelling approach.
We show that EPIC-Survival performs better than other approaches in modelling intrahepatic cholangiocarcinoma.
arXiv Detail & Related papers (2021-01-26T21:11:45Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.