Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
- URL: http://arxiv.org/abs/2507.23491v1
- Date: Thu, 31 Jul 2025 12:23:10 GMT
- Title: Explainable artificial intelligence model predicting the risk of all-cause mortality in patients with type 2 diabetes mellitus
- Authors: Olga Vershinina, Jacopo Sabbatinelli, Anna Rita Bonfigli, Dalila Colombaretti, Angelica Giuliani, Mikhail Krivonosov, Arseniy Trukhanov, Claudio Franceschi, Mikhail Ivanchenko, Fabiola Olivieri,
- Abstract summary: This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years.<n>Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective. Type 2 diabetes mellitus (T2DM) is a highly prevalent non-communicable chronic disease that substantially reduces life expectancy. Accurate estimation of all-cause mortality risk in T2DM patients is crucial for personalizing and optimizing treatment strategies. Research Design and Methods. This study analyzed a cohort of 554 patients (aged 40-87 years) with diagnosed T2DM over a maximum follow-up period of 16.8 years, during which 202 patients (36%) died. Key survival-associated features were identified, and multiple machine learning (ML) models were trained and validated to predict all-cause mortality risk. To improve model interpretability, Shapley additive explanations (SHAP) was applied to the best-performing model. Results. The extra survival trees (EST) model, incorporating ten key features, demonstrated the best predictive performance. The model achieved a C-statistic of 0.776, with the area under the receiver operating characteristic curve (AUC) values of 0.86, 0.80, 0.841, and 0.826 for 5-, 10-, 15-, and 16.8-year all-cause mortality predictions, respectively. The SHAP approach was employed to interpret the model's individual decision-making processes. Conclusions. The developed model exhibited strong predictive performance for mortality risk assessment. Its clinically interpretable outputs enable potential bedside application, improving the identification of high-risk patients and supporting timely treatment optimization.
Related papers
- Early Mortality Prediction in ICU Patients with Hypertensive Kidney Disease Using Interpretable Machine Learning [3.4335475695580127]
Hypertensive kidney disease (HKD) patients in intensive care units (ICUs) face high short-term mortality.<n>We developed a machine learning framework to predict 30-day in-hospital mortality among ICU patients with HKD.
arXiv Detail & Related papers (2025-07-25T00:48:23Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - A Transformer-based survival model for prediction of all-cause mortality in heart failure patients: a multi-cohort study [5.831730826863567]
We developed and validated TRisk, a Transformer-based AI model predicting 36-month mortality in heart failure patients.<n>Our study included 403,534 heart failure patients (ages 40-90) from 1,418 English general practices.
arXiv Detail & Related papers (2025-03-16T01:53:50Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - On the explainability of hospitalization prediction on a large COVID-19
patient dataset [45.82374977939355]
We develop various AI models to predict hospitalization on a large (over 110$k$) cohort of COVID-19 positive-tested US patients.
Despite high data unbalance, the models reach average precision 0.96-0.98 (0.75-0.85), recall 0.96-0.98 (0.74-0.85), and $F_score 0.97-0.98 (0.79-0.83) on the non-hospitalized (or hospitalized) class.
arXiv Detail & Related papers (2021-10-28T10:23:38Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
The aim of this study was to build computational models to predict post-CA outcome.
We hypothesized that model performance could be enhanced by integrating physiological time series (PTS) data and by training machine learning (ML) classifiers.
Results attest to the effectiveness of ML models for post-CA predictive modeling and suggest that PTS recorded in very early phase after resuscitation encode short-term outcome probabilities.
arXiv Detail & Related papers (2020-02-09T07:53:50Z) - Interpretable Machine Learning Model for Early Prediction of Mortality
in Elderly Patients with Multiple Organ Dysfunction Syndrome (MODS): a
Multicenter Retrospective Study and Cross Validation [9.808639780672156]
Elderly patients with MODS have high risk of death and poor prognosis.
This study aims to develop an interpretable and generalizable model for early mortality prediction in elderly patients with MODS.
arXiv Detail & Related papers (2020-01-28T17:15:34Z) - A Large-scale Multimodal Study for Predicting Mortality Risk Using Minimal and Low Parameter Models and Separable Risk Assessment [0.0]
We develop and validate several multimodal models that can predict 1-year mortality based on a massive clinical dataset.<n>Our focus on predicting 1-year mortality can provide a sense of urgency to the patients.
arXiv Detail & Related papers (2019-01-23T20:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.