Interpretability and Generalization Bounds for Learning Spatial Physics
- URL: http://arxiv.org/abs/2506.15199v1
- Date: Wed, 18 Jun 2025 07:25:09 GMT
- Title: Interpretability and Generalization Bounds for Learning Spatial Physics
- Authors: Alejandro Francisco Queiruga, Theo Gutman-Solo, Shuai Jiang,
- Abstract summary: This work applies the rigor of numerical analysis for differential equations to machine learning by specifically quantifying the accuracy of applying different ML techniques.<n>We prove generalization bounds and convergence rates under finite data discretizations and restricted training data subspaces.<n>Similar lack of generalization is empirically demonstrated for deep linear models, shallow neural networks, and physics-specific DeepONets and Neural Operators.
- Score: 47.664155239439644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While there are many applications of ML to scientific problems that look promising, visuals can be deceiving. For scientific applications, actual quantitative accuracy is crucial. This work applies the rigor of numerical analysis for differential equations to machine learning by specifically quantifying the accuracy of applying different ML techniques to the elementary 1D Poisson differential equation. Beyond the quantity and discretization of data, we identify that the function space of the data is critical to the generalization of the model. We prove generalization bounds and convergence rates under finite data discretizations and restricted training data subspaces by analyzing the training dynamics and deriving optimal parameters for both a white-box differential equation discovery method and a black-box linear model. The analytically derived generalization bounds are replicated empirically. Similar lack of generalization is empirically demonstrated for deep linear models, shallow neural networks, and physics-specific DeepONets and Neural Operators. We theoretically and empirically demonstrate that generalization to the true physical equation is not guaranteed in each explored case. Surprisingly, we find that different classes of models can exhibit opposing generalization behaviors. Based on our theoretical analysis, we also demonstrate a new mechanistic interpretability lens on scientific models whereby Green's function representations can be extracted from the weights of black-box models. Our results inform a new cross-validation technique for measuring generalization in physical systems. We propose applying it to the Poisson equation as an evaluation benchmark of future methods.
Related papers
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Physics-Informed Gaussian Process Regression Generalizes Linear PDE Solvers [32.57938108395521]
A class of mechanistic models, Linear partial differential equations, are used to describe physical processes such as heat transfer, electromagnetism, and wave propagation.
specialized numerical methods based on discretization are used to solve PDEs.
By ignoring parameter and measurement uncertainty, classical PDE solvers may fail to produce consistent estimates of their inherent approximation error.
arXiv Detail & Related papers (2022-12-23T17:02:59Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - Out-of-Distribution Generalization in Kernel Regression [21.958028127426196]
We study generalization in kernel regression when the training and test distributions are different.
We identify an overlap matrix that quantifies the mismatch between distributions for a given kernel.
We develop procedures for optimizing training and test distributions for a given data budget to find best and worst case generalizations under the shift.
arXiv Detail & Related papers (2021-06-04T04:54:25Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired
Dictionary-based Sparse Regression Approach [9.36739413306697]
We blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations.
We obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime.
We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks.
arXiv Detail & Related papers (2021-05-11T08:46:51Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.