論文の概要: Managing Complex Failure Analysis Workflows with LLM-based Reasoning and Acting Agents
- arxiv url: http://arxiv.org/abs/2506.15567v1
- Date: Wed, 18 Jun 2025 15:43:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-19 19:35:51.725057
- Title: Managing Complex Failure Analysis Workflows with LLM-based Reasoning and Acting Agents
- Title(参考訳): LLMに基づく推論とアクトエージェントによる複雑な故障解析ワークフローの管理
- Authors: Aline Dobrovsky, Konstantin Schekotihin, Christian Burmer,
- Abstract要約: 失敗分析(FA)は、非常に複雑で知識集約的なプロセスである。
FAラボの計算インフラにおけるAIコンポーネントの統合は、さまざまなタスクを自動化する可能性がある。
本稿では,Large Language Model (LLM) を用いた計画エージェント (LPA) の設計と実装について検討する。
- 参考スコア(独自算出の注目度): 2.2626080389297654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Failure Analysis (FA) is a highly intricate and knowledge-intensive process. The integration of AI components within the computational infrastructure of FA labs has the potential to automate a variety of tasks, including the detection of non-conformities in images, the retrieval of analogous cases from diverse data sources, and the generation of reports from annotated images. However, as the number of deployed AI models increases, the challenge lies in orchestrating these components into cohesive and efficient workflows that seamlessly integrate with the FA process. This paper investigates the design and implementation of a Large Language Model (LLM)-based Planning Agent (LPA) to assist FA engineers in solving their analysis cases. The LPA integrates LLMs with advanced planning capabilities and external tool utilization, enabling autonomous processing of complex queries, retrieval of relevant data from external systems, and generation of human-readable responses. Evaluation results demonstrate the agent's operational effectiveness and reliability in supporting FA tasks.
- Abstract(参考訳): 失敗分析(FA)は、非常に複雑で知識集約的なプロセスである。
FAラボの計算インフラにおけるAIコンポーネントの統合は、画像の不整合の検出、さまざまなデータソースからの類似事例の検索、注釈付き画像からのレポート生成など、さまざまなタスクを自動化する可能性がある。
しかし、デプロイされたAIモデルの数が増加するにつれて、これらのコンポーネントをFAプロセスとシームレスに統合する結合的で効率的なワークフローにまとめることが課題となっている。
本稿では,Large Language Model (LLM) を用いた計画エージェント (LPA) の設計と実装について検討する。
LPAはLCMを高度な計画機能と外部ツールの利用と統合し、複雑なクエリの自律的な処理、外部システムからの関連データの検索、人間可読応答の生成を可能にしている。
FAタスク支援におけるエージェントの運用効率と信頼性について評価した。
関連論文リスト
- Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
大規模言語モデルに基づくエージェントに特徴工学の原則を適用したMLモニタリングのための認知アーキテクチャを提案する。
決定手順モジュールは、リファクタリング、ブレークダウン、コンパイルという3つの重要なステップを通じて、機能エンジニアリングをシミュレートする。
複数のLCMを用いた実験により, 各種ベースラインと比較して精度が有意に向上し, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-06-11T13:48:25Z) - Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration [63.90193684394165]
マルチエージェント・クロスタスク体験学習(MAEL)は,LSM駆動型エージェントに明示的なクロスタスク学習と経験蓄積を付与する新しいフレームワークである。
経験的学習フェーズでは、タスク解決ワークフローの各ステップの品質を定量化し、その結果の報酬を記憶する。
推論中、エージェントは、各推論ステップの有効性を高めるために、いくつかの例として、高頻度のタスク関連体験を検索する。
論文 参考訳(メタデータ) (2025-05-29T07:24:37Z) - Evaluating Large Language Models for Real-World Engineering Tasks [75.97299249823972]
本稿では,実運用指向のエンジニアリングシナリオから得られた100以上の質問をキュレートしたデータベースを提案する。
このデータセットを用いて、4つの最先端の大規模言語モデル(LLM)を評価する。
以上の結果から,LLMは時間的および構造的推論において強みを示すが,抽象的推論や形式的モデリング,文脈に敏感な工学的論理にはかなり苦労することがわかった。
論文 参考訳(メタデータ) (2025-05-12T14:05:23Z) - Complex LLM Planning via Automated Heuristics Discovery [48.07520536415374]
複雑な計画タスクのための大規模言語モデル(LLM)の強化を検討する。
我々は,LLMがガイドタイム検索の関数を明示的に生成できる新しい手法である自動推論発見(AutoHD)を提案する。
提案手法はモデルトレーニングや微調整を必要とせず,LLMが生成する関数の明示的な定義は推論過程の解釈可能性と洞察を与える。
論文 参考訳(メタデータ) (2025-02-26T16:52:31Z) - ARTEMIS-DA: An Advanced Reasoning and Transformation Engine for Multi-Step Insight Synthesis in Data Analytics [0.0]
ARTEMIS-DAは、複雑で多段階のデータ分析タスクを解決するために、大規模言語モデルを拡張するために設計されたフレームワークである。
ARTEMIS-DAはPlanner、Coder、Grapherという3つのコアコンポーネントを統合している。
このフレームワークはWikiTableQuestionsやTabFactといったベンチマーク上でのSOTA(State-of-the-art)のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-12-18T18:44:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Re-Thinking Process Mining in the AI-Based Agents Era [39.58317527488534]
大規模言語モデル(LLM)は強力な対話インタフェースとして登場し、プロセスマイニング(PM)タスクにおけるその応用は有望な結果を示している。
本稿では,LLMにおけるPMの有効性を高めるために,AIベースのエージェント(AgWf)パラダイムを活用することを提案する。
我々はAgWfの様々な実装とAIベースのタスクの種類について検討する。
論文 参考訳(メタデータ) (2024-08-14T10:14:18Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。