Learning from M-Tuple Dominant Positive and Unlabeled Data
- URL: http://arxiv.org/abs/2506.15686v1
- Date: Sun, 25 May 2025 13:20:11 GMT
- Title: Learning from M-Tuple Dominant Positive and Unlabeled Data
- Authors: Jiahe Qin, Junpeng Li, Changchun Hua, Yana Yang,
- Abstract summary: This paper proposes a generalized learning framework emphMDPU to better align with real-world application scenarios.<n>We derive an unbiased risk estimator that satisfies risk consistency based on the empirical risk minimization (ERM) method.<n>To mitigate the inevitable overfitting issue during training, a risk correction method is introduced, leading to the development of a corrected risk estimator.
- Score: 9.568395664931504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label Proportion Learning (LLP) addresses the classification problem where multiple instances are grouped into bags and each bag contains information about the proportion of each class. However, in practical applications, obtaining precise supervisory information regarding the proportion of instances in a specific class is challenging. To better align with real-world application scenarios and effectively leverage the proportional constraints of instances within tuples, this paper proposes a generalized learning framework \emph{MDPU}. Specifically, we first mathematically model the distribution of instances within tuples of arbitrary size, under the constraint that the number of positive instances is no less than that of negative instances. Then we derive an unbiased risk estimator that satisfies risk consistency based on the empirical risk minimization (ERM) method. To mitigate the inevitable overfitting issue during training, a risk correction method is introduced, leading to the development of a corrected risk estimator. The generalization error bounds of the unbiased risk estimator theoretically demonstrate the consistency of the proposed method. Extensive experiments on multiple datasets and comparisons with other relevant baseline methods comprehensively validate the effectiveness of the proposed learning framework.
Related papers
- Learning from Similarity-Confidence and Confidence-Difference [0.24578723416255752]
We propose a novel Weakly Supervised Learning (WSL) framework that leverages complementary weak supervision signals from multiple perspectives.<n>Specifically, we introduce SconfConfDiff Classification, a method that integrates two distinct forms of weaklabels.<n>We prove that both estimators achieve optimal convergence rates with respect to estimation error bounds.
arXiv Detail & Related papers (2025-08-07T07:42:59Z) - ESA: Example Sieve Approach for Multi-Positive and Unlabeled Learning [5.016605351534376]
We propose an Example Sieve Approach (ESA) to select examples for training a multi-class classifier.<n>Specifically, we sieve out some examples by utilizing the Certain Loss (CL) value of each example in the training stage.<n>We show that the estimation error of proposed ESA obtains the optimal parametric convergence rate.
arXiv Detail & Related papers (2024-12-03T08:09:06Z) - An Unbiased Risk Estimator for Partial Label Learning with Augmented Classes [46.663081214928226]
We propose an unbiased risk estimator with theoretical guarantees for PLLAC.
We provide a theoretical analysis of the estimation error bound of PLLAC.
Experiments on benchmark, UCI and real-world datasets demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-09-29T07:36:16Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - Can Class-Priors Help Single-Positive Multi-Label Learning? [40.312419865957224]
Single-positive multi-label learning (SPMLL) is a typical weakly supervised multi-label learning problem.
Class-priors estimator is introduced, which could estimate the class-priors that are theoretically guaranteed to converge to the ground-truth class-priors.
Based on the estimated class-priors, an unbiased risk estimator for classification is derived, and the corresponding risk minimizer could be guaranteed to approximately converge to the optimal risk minimizer on fully supervised data.
arXiv Detail & Related papers (2023-09-25T05:45:57Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
A common approach is designing a data-driven surrogate penalty to capture generalization and minimize the empirical risk jointly with the penalty.
We argue that a significant failure mode of this recipe is an excess risk due to an erroneous penalty or hardness in joint optimization.
We present an approach that eliminates this problem. Instead of jointly minimizing empirical risk with the penalty, we minimize the penalty under the constraint of optimality of the empirical risk.
arXiv Detail & Related papers (2023-08-30T08:46:46Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
We consider the problem of learning from data corrupted by underrepresentation bias.
We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out rates.
We show that our algorithm permits efficient learning for model classes of finite VC dimension.
arXiv Detail & Related papers (2023-06-19T18:25:44Z) - Learning from a Biased Sample [3.546358664345473]
We propose a method for learning a decision rule that minimizes the worst-case risk incurred under a family of test distributions.
We empirically validate our proposed method in a case study on prediction of mental health scores from health survey data.
arXiv Detail & Related papers (2022-09-05T04:19:16Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
In this paper, we aim to learn an accurate classifier without any class labels.
We first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets.
We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training.
Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets.
arXiv Detail & Related papers (2022-07-04T16:22:44Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.