MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
- URL: http://arxiv.org/abs/2506.15692v2
- Date: Wed, 30 Jul 2025 21:58:41 GMT
- Title: MLE-STAR: Machine Learning Engineering Agent via Search and Targeted Refinement
- Authors: Jaehyun Nam, Jinsung Yoon, Jiefeng Chen, Jinwoo Shin, Sercan Ö. Arık, Tomas Pfister,
- Abstract summary: We propose MLE-STAR, a novel approach to build machine learning agents.<n>MLE-STAR first leverages external knowledge by using a search engine to retrieve effective models from the web.<n>We introduce a novel ensembling method using an effective strategy suggested by MLE-STAR.
- Score: 73.34265922786763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agents based on large language models (LLMs) for machine learning engineering (MLE) can automatically implement ML models via code generation. However, existing approaches to build such agents often rely heavily on inherent LLM knowledge and employ coarse exploration strategies that modify the entire code structure at once. This limits their ability to select effective task-specific models and perform deep exploration within specific components, such as experimenting extensively with feature engineering options. To overcome these, we propose MLE-STAR, a novel approach to build MLE agents. MLE-STAR first leverages external knowledge by using a search engine to retrieve effective models from the web, forming an initial solution, then iteratively refines it by exploring various strategies targeting specific ML components. This exploration is guided by ablation studies analyzing the impact of individual code blocks. Furthermore, we introduce a novel ensembling method using an effective strategy suggested by MLE-STAR. Our experimental results show that MLE-STAR achieves medals in 64% of the Kaggle competitions on the MLE-bench Lite, significantly outperforming the best alternative.
Related papers
- LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation [12.098817831819078]
Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored.<n>This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design.
arXiv Detail & Related papers (2025-06-02T10:59:54Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - MLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges? [64.62421656031128]
MLRC-Bench is a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions.<n>Unlike prior work, MLRC-Bench measures the key steps of proposing and implementing novel research methods.<n>Even the best-performing tested agent closes only 9.3% of the gap between baseline and top human participant scores.
arXiv Detail & Related papers (2025-04-13T19:35:43Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.<n>This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT (Multi-Agent LLM Training) is a novel post-training strategy that divides the reasoning process into generation, verification, and refinement steps.<n>On MATH, GSM8K, and CSQA, MALT surpasses the same baseline LLM with a relative improvement of 15.66%, 7.42%, and 9.40% respectively.
arXiv Detail & Related papers (2024-12-02T19:30:36Z) - LLM4PR: Improving Post-Ranking in Search Engine with Large Language Models [9.566432486156335]
Large Language Models for Post-Ranking in search engine (LLM4PR)
We introduce a novel paradigm named Large Language Models for Post-Ranking in search engine (LLM4PR)
arXiv Detail & Related papers (2024-11-02T08:36:16Z) - SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning [14.702694298483445]
Tree-Search Enhanced LLM Agents (SELA) is an agent-based system that leverages Monte Carlo Tree Search (MCTS) to optimize the AutoML process.
SELA represents pipeline configurations as trees, enabling agents to conduct experiments intelligently and iteratively refine their strategies.
In an extensive evaluation across 20 machine learning datasets, we compare the performance of traditional and agent-based AutoML methods.
arXiv Detail & Related papers (2024-10-22T17:56:08Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - Generative Multimodal Entity Linking [24.322540112710918]
Multimodal Entity Linking (MEL) is the task of mapping mentions with multimodal contexts to referent entities from a knowledge base.
Existing MEL methods mainly focus on designing complex multimodal interaction mechanisms and require fine-tuning all model parameters.
We propose GEMEL, a Generative Multimodal Entity Linking framework based on Large Language Models (LLMs)
Our framework is compatible with any off-the-shelf language model, paving the way towards an efficient and general solution.
arXiv Detail & Related papers (2023-06-22T07:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.