DeepRTL2: A Versatile Model for RTL-Related Tasks
- URL: http://arxiv.org/abs/2506.15697v1
- Date: Wed, 28 May 2025 09:28:39 GMT
- Title: DeepRTL2: A Versatile Model for RTL-Related Tasks
- Authors: Yi Liu, Hongji Zhang, Yunhao Zhou, Zhengyuan Shi, Changran Xu, Qiang Xu,
- Abstract summary: We present DeepRTL2, a family of versatile large language models (LLMs) that unifies both generation- and embedding-based tasks related to RTL.<n>By simultaneously tackling a broad range of tasks, DeepRTL2 represents the first model to provide a comprehensive solution to the diverse challenges in EDA.
- Score: 10.44277146824812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of large language models (LLMs) into electronic design automation (EDA) has significantly advanced the field, offering transformative benefits, particularly in register transfer level (RTL) code generation and understanding. While previous studies have demonstrated the efficacy of fine-tuning LLMs for these generation-based tasks, embedding-based tasks, which are equally critical to EDA workflows, have been largely overlooked. These tasks, including natural language code search, RTL code functionality equivalence checking, and performance prediction, are essential for accelerating and optimizing the hardware design process. To address this gap, we present DeepRTL2, a family of versatile LLMs that unifies both generation- and embedding-based tasks related to RTL. By simultaneously tackling a broad range of tasks, DeepRTL2 represents the first model to provide a comprehensive solution to the diverse challenges in EDA. Through extensive experiments, we show that DeepRTL2 achieves state-of-the-art performance across all evaluated tasks.
Related papers
- Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - Evaluating Large Language Models on Non-Code Software Engineering Tasks [4.381476817430934]
Large Language Models (LLMs) have demonstrated remarkable capabilities in code understanding and generation.<n>We present the first comprehensive benchmark, which we name Software Engineering Language Understanding' (SELU)<n>SELU covers classification, regression, Named Entity Recognition (NER) and Masked Language Modeling (MLM) targets, with data drawn from diverse sources.
arXiv Detail & Related papers (2025-06-12T15:52:32Z) - EIFBENCH: Extremely Complex Instruction Following Benchmark for Large Language Models [65.48902212293903]
We present the Extremely Complex Instruction Following Benchmark (EIFBENCH) for evaluating large language models (LLMs)<n>EIFBENCH includes multi-task scenarios that enable comprehensive assessment across diverse task types concurrently.<n>We also propose the Segment Policy Optimization (SegPO) algorithm to enhance the LLM's ability to accurately fulfill multi-task workflow.
arXiv Detail & Related papers (2025-06-10T02:39:55Z) - Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router [9.580226379350737]
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models.<n>Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models.<n>We propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs.
arXiv Detail & Related papers (2025-06-06T09:18:56Z) - RTLRepoCoder: Repository-Level RTL Code Completion through the Combination of Fine-Tuning and Retrieval Augmentation [6.428086269916113]
We propose RTLRepoCoder, a groundbreaking solution that incorporates specific fine-tuning and Retrieval-Augmented Generation (RAG) for repository-level Verilog code completion.<n>Our solution achieves state-of-the-art performance on public benchmark, significantly surpassing GPT-4 and advanced domain-specific LLMs on Edit Similarity and Exact Match rate.
arXiv Detail & Related papers (2025-04-11T09:04:50Z) - TuRTLe: A Unified Evaluation of LLMs for RTL Generation [0.6010802600885173]
We propose TuRTLe, a unified evaluation framework designed to assess LLMs across key RTL generation tasks.<n>We benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks.<n>Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria.
arXiv Detail & Related papers (2025-03-31T07:43:12Z) - From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead.<n>We propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict.
arXiv Detail & Related papers (2024-11-19T11:03:09Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
Large Language Models (LLMs) are computational models capable of performing complex natural language processing tasks.
This paper introduces AIvril, a framework designed to enhance the accuracy and reliability of RTL-aware LLMs.
arXiv Detail & Related papers (2024-09-03T15:07:11Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
We introduce a two-level hierarchical framework, RL-GPT, comprising a slow agent and a fast agent.
The slow agent analyzes actions suitable for coding, while the fast agent executes coding tasks.
This decomposition effectively focuses each agent on specific tasks, proving highly efficient within our pipeline.
arXiv Detail & Related papers (2024-02-29T16:07:22Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.