Federated Incomplete Multi-view Clustering with Globally Fused Graph Guidance
- URL: http://arxiv.org/abs/2506.15703v1
- Date: Fri, 30 May 2025 02:17:51 GMT
- Title: Federated Incomplete Multi-view Clustering with Globally Fused Graph Guidance
- Authors: Guoqing Chao, Zhenghao Zhang, Lei Meng, Jie Wen, Dianhui Chu,
- Abstract summary: We propose a novel Federated Incomplete Multi-view Clustering method with globally Fused Graph guidance (FIMCFG)<n>Under the guidance of the fused graph, the two underlying features are fused into high-level features, based on which clustering is conducted under the supervision of pseudo-labeling.
- Score: 10.443422245356922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated multi-view clustering has been proposed to mine the valuable information within multi-view data distributed across different devices and has achieved impressive results while preserving the privacy. Despite great progress, most federated multi-view clustering methods only used global pseudo-labels to guide the downstream clustering process and failed to exploit the global information when extracting features. In addition, missing data problem in federated multi-view clustering task is less explored. To address these problems, we propose a novel Federated Incomplete Multi-view Clustering method with globally Fused Graph guidance (FIMCFG). Specifically, we designed a dual-head graph convolutional encoder at each client to extract two kinds of underlying features containing global and view-specific information. Subsequently, under the guidance of the fused graph, the two underlying features are fused into high-level features, based on which clustering is conducted under the supervision of pseudo-labeling. Finally, the high-level features are uploaded to the server to refine the graph fusion and pseudo-labeling computation. Extensive experimental results demonstrate the effectiveness and superiority of FIMCFG. Our code is publicly available at https://github.com/PaddiHunter/FIMCFG.
Related papers
- Global Graph Propagation with Hierarchical Information Transfer for Incomplete Contrastive Multi-view Clustering [12.080981190754986]
We propose a novel incomplete multi-view clustering method with hierarchical information transfer.<n>Our method combines view-specific representation learning, global graph propagation with hierarchical information transfer, and contrastive clustering for joint optimization.
arXiv Detail & Related papers (2025-02-26T16:50:08Z) - Federated Incomplete Multi-View Clustering with Heterogeneous Graph Neural Networks [21.710283538891968]
Federated multi-view clustering offers the potential to develop a global clustering model using data distributed across multiple devices.
Current methods face challenges due to the absence of label information and the paramount importance of data privacy.
We introduce a federated incomplete multi-view clustering framework with heterogeneous graph neural networks (FIM-GNNs)
arXiv Detail & Related papers (2024-06-12T07:16:00Z) - Federated Deep Multi-View Clustering with Global Self-Supervision [51.639891178519136]
Federated multi-view clustering has the potential to learn a global clustering model from data distributed across multiple devices.
In this setting, label information is unknown and data privacy must be preserved.
We propose a novel federated deep multi-view clustering method that can mine complementary cluster structures from multiple clients.
arXiv Detail & Related papers (2023-09-24T17:07:01Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
We propose a novel Dual contrastive calibration network for Multi-View Clustering (DealMVC)
We first design a fusion mechanism to obtain a global cross-view feature. Then, a global contrastive calibration loss is proposed by aligning the view feature similarity graph and the high-confidence pseudo-label graph.
During the training procedure, the interacted cross-view feature is jointly optimized at both local and global levels.
arXiv Detail & Related papers (2023-08-17T14:14:28Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Deep Multi-View Subspace Clustering with Anchor Graph [11.291831842959926]
We propose a novel deep multi-view subspace clustering method with anchor graph (DMCAG)
DMCAG learns the embedded features for each view independently, which are used to obtain the subspace representations.
Our method achieves superior clustering performance over other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-11T16:17:43Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Consistent and Complementary Graph Regularized Multi-view Subspace
Clustering [31.187031653119025]
This study investigates the problem of multi-view clustering, where multiple views contain consistent information and each view also includes complementary information.
We propose a method that involves consistent and complementary graph-regularized multi-view subspace clustering (GRMSC)
The objective function is optimized by the augmented Lagrangian multiplier method in order to achieve multi-view clustering.
arXiv Detail & Related papers (2020-04-07T03:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.