Federated Incomplete Multi-View Clustering with Heterogeneous Graph Neural Networks
- URL: http://arxiv.org/abs/2406.08524v1
- Date: Wed, 12 Jun 2024 07:16:00 GMT
- Title: Federated Incomplete Multi-View Clustering with Heterogeneous Graph Neural Networks
- Authors: Xueming Yan, Ziqi Wang, Yaochu Jin,
- Abstract summary: Federated multi-view clustering offers the potential to develop a global clustering model using data distributed across multiple devices.
Current methods face challenges due to the absence of label information and the paramount importance of data privacy.
We introduce a federated incomplete multi-view clustering framework with heterogeneous graph neural networks (FIM-GNNs)
- Score: 21.710283538891968
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated multi-view clustering offers the potential to develop a global clustering model using data distributed across multiple devices. However, current methods face challenges due to the absence of label information and the paramount importance of data privacy. A significant issue is the feature heterogeneity across multi-view data, which complicates the effective mining of complementary clustering information. Additionally, the inherent incompleteness of multi-view data in a distributed setting can further complicate the clustering process. To address these challenges, we introduce a federated incomplete multi-view clustering framework with heterogeneous graph neural networks (FIM-GNNs). In the proposed FIM-GNNs, autoencoders built on heterogeneous graph neural network models are employed for feature extraction of multi-view data at each client site. At the server level, heterogeneous features from overlapping samples of each client are aggregated into a global feature representation. Global pseudo-labels are generated at the server to enhance the handling of incomplete view data, where these labels serve as a guide for integrating and refining the clustering process across different data views. Comprehensive experiments have been conducted on public benchmark datasets to verify the performance of the proposed FIM-GNNs in comparison with state-of-the-art algorithms.
Related papers
- CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Federated Deep Multi-View Clustering with Global Self-Supervision [51.639891178519136]
Federated multi-view clustering has the potential to learn a global clustering model from data distributed across multiple devices.
In this setting, label information is unknown and data privacy must be preserved.
We propose a novel federated deep multi-view clustering method that can mine complementary cluster structures from multiple clients.
arXiv Detail & Related papers (2023-09-24T17:07:01Z) - Scalable Incomplete Multi-View Clustering with Structure Alignment [71.62781659121092]
In this paper, we propose a novel incomplete anchor graph learning framework.
We construct the view-specific anchor graph to capture the complementary information from different views.
The time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples.
arXiv Detail & Related papers (2023-08-31T08:30:26Z) - Self-supervised Image Clustering from Multiple Incomplete Views via
Constrastive Complementary Generation [5.314364096882052]
We propose Contrastive Incomplete Multi-View Image Clustering with Generative Adversarial Networks (CIMIC-GAN)
We incorporate autoencoding representation of complete and incomplete data into double contrastive learning to achieve learning consistency.
Experiments conducted on textcolorblackfour extensively-used datasets show that CIMIC-GAN outperforms state-of-the-art incomplete multi-View clustering methods.
arXiv Detail & Related papers (2022-09-24T05:08:34Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Error-Robust Multi-View Clustering: Progress, Challenges and
Opportunities [67.54503077766171]
Since label information is often expensive to acquire, multi-view clustering has gained growing interest.
Error-robust multi-view clustering approaches with explicit error removal formulation can be structured into five broad research categories.
This survey summarizes and reviews recent advances in error-robust clustering for multi-view data.
arXiv Detail & Related papers (2021-05-07T04:03:02Z) - Multi-view Subspace Clustering Networks with Local and Global Graph
Information [19.64977233324484]
The goal of this study is to explore the underlying grouping structure of data collected from different fields or measurements.
We propose the novel multi-view subspace clustering networks with local and global graph information, termed MSCNLG.
As an end-to-end trainable framework, the proposed method fully investigates the valuable information of multiple views.
arXiv Detail & Related papers (2020-10-19T09:00:19Z) - Deep Incomplete Multi-View Multiple Clusterings [41.43164409639238]
We introduce a deep incomplete multi-view multiple clusterings framework, which achieves the completion of data view and multiple shared representations simultaneously.
Experiments on benchmark datasets confirm that DiMVMC outperforms the state-of-the-art competitors in generating multiple clusterings with high diversity and quality.
arXiv Detail & Related papers (2020-10-02T08:01:24Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.