論文の概要: Generalisation Bounds of Zero-Shot Economic Forecasting using Time Series Foundation Models
- arxiv url: http://arxiv.org/abs/2506.15705v1
- Date: Fri, 30 May 2025 03:10:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-29 09:28:14.771643
- Title: Generalisation Bounds of Zero-Shot Economic Forecasting using Time Series Foundation Models
- Title(参考訳): 時系列基礎モデルを用いたゼロショット経済予測の一般化境界
- Authors: Jittarin Jetwiriyanon, Teo Susnjak, Surangika Ranathunga,
- Abstract要約: 本研究では,時系列基礎モデルのマクロ経済指標に対するゼロショット予測能力について検討した。
データスカース条件と構造破壊の下で、最先端の3つのTSFMをバックテストしました。
この結果から, TSFMは微調整がなければ, 安定した経済環境下での古典的モデルに適合し, 超過することができることが示唆された。
- 参考スコア(独自算出の注目度): 1.131401554081614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates zero-shot forecasting capabilities of Time Series Foundation Models (TSFMs) for macroeconomic indicators. We apply TSFMs to forecasting economic indicators under univariate conditions, bypassing the need for train bespoke econometric models using and extensive training datasets. Our experiments were conducted on a case study dataset, without additional customisation. We rigorously back-tested three state-of-the-art TSFMs (Chronos, TimeGPT and Moirai) under data-scarce conditions and structural breaks. Our results demonstrate that appropriately engineered TSFMs can internalise rich economic dynamics, accommodate regime shifts, and deliver well-behaved uncertainty estimates out of the box, while matching state-of-the-art multivariate models on this domain. Our findings suggest that, without any fine-tuning, TSFMs can match or exceed classical models during stable economic conditions. However, they are vulnerable to degradation in performances during periods of rapid shocks. The findings offer guidance to practitioners on when zero-shot deployments are viable for macroeconomic monitoring and strategic planning.
- Abstract(参考訳): 本研究では,時系列基礎モデル(TSFM)のマクロ経済指標に対するゼロショット予測能力について検討した。
我々は,一変量条件下での経済指標の予測にTSFMを適用し,広範囲なトレーニングデータセットを用いたエコノメトリーモデルの訓練の必要性を回避した。
本実験はケーススタディデータセットを用いて行ったが,追加のカスタマイズは行わなかった。
我々は,データスカース条件と構造破壊の下で,最先端の3つのTSFM(Chronos,TimeGPT,Moirai)を厳格にバックテストした。
この結果から,TSFMは,この領域における最先端多変量モデルと整合しながら,豊かな経済動態を内包し,体制シフトに対応し,不確実性評価を最初から達成できることが示唆された。
この結果から, TSFMは微調整がなければ, 安定した経済環境下での古典的モデルに適合し, 超過することができることが示唆された。
しかし、急激な衝撃による性能低下には弱い。
この発見は、マクロ経済モニタリングと戦略的計画のためにゼロショットデプロイメントがいつ可能か、実践者にガイダンスを提供する。
関連論文リスト
- Can Time-Series Foundation Models Perform Building Energy Management Tasks? [5.450531952940644]
エネルギー管理タスクを構築するには、さまざまな時系列データからの処理と学習が必要である。
既存のソリューションは、これらのタスクを実行するために、bespokeタスクとデータ固有のモデルに依存しています。
LLM(Large Language Models)の変革的な成功に触発されて、TSFM(Time-Series Foundation Models)は、これを変える可能性を秘めている。
論文 参考訳(メタデータ) (2025-06-12T19:45:10Z) - Less is More: Unlocking Specialization of Time Series Foundation Models via Structured Pruning [29.377178687865136]
時系列基礎モデル 広大なパラメータを事前訓練し、驚くべきゼロショット予測性能を達成する。
驚くべきことに、微調整後も、TSFMは、フルショットダウンストリームデータでトレーニングされた、より小さな、特殊なモデルよりも一貫してパフォーマンスを向上することはできない。
より関連性が高くコンパクトなパラメータ空間に焦点を合わせることにより、その後の微調整プロセスを正規化するための構造化プルーニング法を提案する。
論文 参考訳(メタデータ) (2025-05-29T07:33:49Z) - FinTSB: A Comprehensive and Practical Benchmark for Financial Time Series Forecasting [58.70072722290475]
ファイナンシャル・タイム・シリーズ(FinTS)は、人間の脳を増強した意思決定の行動を記録する。
FinTSBは金融時系列予測のための総合的で実用的なベンチマークである。
論文 参考訳(メタデータ) (2025-02-26T05:19:16Z) - HMM-LSTM Fusion Model for Economic Forecasting [0.0]
本稿では,HMM(Hidden Markov Models)とLSTM(Long Short-Term Memory)ニューラルネットワークの経済予測への応用について検討する。
この研究は、HMM由来の隠れ状態を統合し、LSTMモデリングのための追加機能として意味を持つ新しいアプローチを探求する。
論文 参考訳(メタデータ) (2025-01-01T17:31:36Z) - Time Series Foundational Models: Their Role in Anomaly Detection and Prediction [0.0]
時系列基礎モデル (TSFM) は時系列予測において注目されている。
本稿では,異常検出および予測タスクにおけるTSFMの有効性を批判的に評価する。
論文 参考訳(メタデータ) (2024-12-26T17:15:30Z) - LLMForecaster: Improving Seasonal Event Forecasts with Unstructured Textual Data [63.777637042161544]
本稿では,非構造化意味情報と文脈情報と履歴データを組み込むために,大規模言語モデルを微調整した新しい予測ポストプロセッサを提案する。
産業規模の小売アプリケーションでは, ホリデードリブン需要の急激な上昇にともなう数種類の製品に対して, 本手法が統計的に有意な改善を予測できることが実証された。
論文 参考訳(メタデータ) (2024-12-03T16:18:42Z) - BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
本稿では,階層間の予測の整合性を維持するために,量子レグレッション損失を最適化するフレキシブル非線形モデルを提案する。
ここで導入された理論的枠組みは、下層の微分可微分損失関数を持つ任意の予測モデルに適用できる。
論文 参考訳(メタデータ) (2021-02-25T00:59:01Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。