論文の概要: Synapse: Adaptive Arbitration of Complementary Expertise in Time Series Foundational Models
- arxiv url: http://arxiv.org/abs/2511.05460v1
- Date: Fri, 07 Nov 2025 18:01:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-10 21:00:44.8542
- Title: Synapse: Adaptive Arbitration of Complementary Expertise in Time Series Foundational Models
- Title(参考訳): Synapse: 時系列基礎モデルにおける相補的専門家の適応的配置
- Authors: Sarkar Snigdha Sarathi Das, Palash Goyal, Mihir Parmar, Yiwen Song, Long T. Le, Lesly Miculicich, Jinsung Yoon, Rui Zhang, Hamid Palangi, Tomas Pfister,
- Abstract要約: 時系列基礎モデル (TSFM) の違いが, 様々な予測設定にまたがって, 特定の性能プロファイルを示すかを検討する。
TSFMの新しい調停フレームワークであるSynapseを提案する。
その結果、Synapseは個々のTSFMだけでなく、他の一般的なアンサンブル技術よりも一貫して優れていることが示された。
- 参考スコア(独自算出の注目度): 50.877082340479085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Time Series Foundational Models (TSFMs) represent a significant advance, capable of forecasting diverse time series with complex characteristics, including varied seasonalities, trends, and long-range dependencies. Despite their primary goal of universal time series forecasting, their efficacy is far from uniform; divergent training protocols and data sources cause individual TSFMs to exhibit highly variable performance across different forecasting tasks, domains, and horizons. Leveraging this complementary expertise by arbitrating existing TSFM outputs presents a compelling strategy, yet this remains a largely unexplored area of research. In this paper, we conduct a thorough examination of how different TSFMs exhibit specialized performance profiles across various forecasting settings, and how we can effectively leverage this behavior in arbitration between different time series models. We specifically analyze how factors such as model selection and forecast horizon distribution can influence the efficacy of arbitration strategies. Based on this analysis, we propose Synapse, a novel arbitration framework for TSFMs. Synapse is designed to dynamically leverage a pool of TSFMs, assign and adjust predictive weights based on their relative, context-dependent performance, and construct a robust forecast distribution by adaptively sampling from the output quantiles of constituent models. Experimental results demonstrate that Synapse consistently outperforms other popular ensembling techniques as well as individual TSFMs, demonstrating Synapse's efficacy in time series forecasting.
- Abstract(参考訳): 事前訓練された時系列基礎モデル(TSFM)は、季節、傾向、長距離依存など、複雑な特徴を持つ多様な時系列を予測できる重要な進歩を示している。
異なるトレーニングプロトコルとデータソースにより、個々のTSFMは、様々な予測タスク、ドメイン、地平線にまたがって高度に変動する性能を示す。
既存のTSFM出力を調停することで、これらの補完的な専門知識を活用することは、魅力的な戦略である。
本稿では,様々な予測環境において,異なるTSFMが特別な性能を示す方法と,異なる時系列モデル間の調停において,この挙動を効果的に活用する方法について,徹底的に検討する。
モデル選択や予測地平線分布などの要因が調停戦略の有効性にどのように影響するかを具体的に分析する。
そこで本研究では,TSFMの新しい調停フレームワークであるSynapseを提案する。
Synapseは、TSFMのプールを動的に活用し、相対的、文脈に依存した性能に基づいて予測重みを割り当て、調整し、構成モデルの出力量子化から適応的にサンプリングすることで堅牢な予測分布を構築するように設計されている。
実験の結果、Synapseは他の一般的なアンサンブル技術や個々のTSFMよりも優れており、時系列予測におけるSynapseの有効性が示されている。
関連論文リスト
- ForecastGAN: A Decomposition-Based Adversarial Framework for Multi-Horizon Time Series Forecasting [0.5213778368155993]
時系列予測は、ファイナンスからサプライチェーン管理までの領域で必須である。
本稿では,マルチホライズン予測のための新しい解析手法であるForecastGANを紹介する。
ForecastGANは、短期予測のための最先端のトランスフォーマーモデルより一貫して優れており、長期水平線では競争力を維持している。
論文 参考訳(メタデータ) (2025-11-06T15:19:23Z) - A Unified Frequency Domain Decomposition Framework for Interpretable and Robust Time Series Forecasting [81.73338008264115]
時系列予測の現在のアプローチは、時間領域であれ周波数領域であれ、主に線形層やトランスフォーマーに基づいたディープラーニングモデルを使用する。
本稿では,多種多様な時系列を数学的に抽象化する統合周波数領域分解フレームワークFIREを提案する。
火は長期予測ベンチマークで最先端のモデルを一貫して上回る。
論文 参考訳(メタデータ) (2025-10-11T09:59:25Z) - Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
時系列予測は多くの現実世界のアプリケーションにおいて重要な役割を果たす。
1つのモデルは、異なるテストサンプルで一貫して他よりも優れていますが、(ii) それぞれのモデルは特定のケースで優れています。
異種モデルのサンプルレベル適応融合による時系列予測のためのフレームワークであるTimeFuseを紹介する。
論文 参考訳(メタデータ) (2025-05-24T00:45:07Z) - A Multi-scale Representation Learning Framework for Long-Term Time Series Forecasting [6.344911113059126]
長期時系列予測(LTSF)は、エネルギー消費や天気予報といった実用的な設定において幅広い用途を提供する。
この研究は、多粒度情報の最適部分利用を含むLTSFの重要な問題に直面している。
提案手法は,様々なスケールにわたる明瞭で同時的な予測を用いて,複雑な時間的ダイナミクスを適切に解き放つ。
論文 参考訳(メタデータ) (2025-05-13T03:26:44Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
本稿では,ランダムにサンプリングされた履歴を抽出し,時間連続関数として調整可能な基底組成を出力するニューラルモデルを提案する。
1)長い尾の分布からランダムにサンプリングされたヒストリーを使用する柔軟なアプローチ、(2)これらの活発にサンプリングされたヒストリーに基づいてトレーニングされたトランスフォーマーバックボーンを表現的出力として、(3)時間の連続関数の基底係数を含む。
論文 参考訳(メタデータ) (2024-07-25T08:48:07Z) - Robust Multivariate Time Series Forecasting against Intra- and Inter-Series Transitional Shift [40.734564394464556]
本稿では,時系列内/時系列間の相関関係を統合的に把握し,時変遷移分布をモデル化するための統一確率グラフモデルを提案する。
6つの高定常MTSデータセットに対する広範囲な実験により、JointPGMの有効性と効率を検証した。
論文 参考訳(メタデータ) (2024-07-18T06:16:03Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
シーケンスモデリング(MAES)のためのモデル・アテンティブ・アンサンブル・ラーニングを提案する。
MAESは、異なるシーケンスダイナミクスの専門家を専門とし、予測を適応的に重み付けるために、注目ベースのゲーティングメカニズムを利用する時系列の専門家の混合物です。
MAESが時系列シフトを受けるデータセットの人気シーケンスモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2021-02-23T05:23:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。