論文の概要: Studying and Improving Graph Neural Network-based Motif Estimation
- arxiv url: http://arxiv.org/abs/2506.15709v2
- Date: Tue, 01 Jul 2025 15:02:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-02 15:54:40.133574
- Title: Studying and Improving Graph Neural Network-based Motif Estimation
- Title(参考訳): グラフニューラルネットワークを用いたモチーフ推定の研究と改善
- Authors: Pedro C. Vieira, Miguel E. P. Silva, Pedro Manuel Pinto Ribeiro,
- Abstract要約: グラフニューラルネットワーク(GNN)は,グラフ表現学習において主要な手法である。
ネットワークモチーフ重要度予測(SP)へのそれらの適用は未定であり、文献に定評のあるベンチマークは存在しない。
本稿では,SP推定をサブグラフ周波数推定に依存しないタスクとしてフレーミングすることで,この問題に対処することを提案する。
提案手法は,周波数カウントから直接SP推定へ移行し,マルチターゲット回帰として問題を変調する。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) are a predominant method for graph representation learning. However, beyond subgraph frequency estimation, their application to network motif significance-profile (SP) prediction remains under-explored, with no established benchmarks in the literature. We propose to address this problem, framing SP estimation as a task independent of subgraph frequency estimation. Our approach shifts from frequency counting to direct SP estimation and modulates the problem as multitarget regression. The reformulation is optimised for interpretability, stability and scalability on large graphs. We validate our method using a large synthetic dataset and further test it on real-world graphs. Our experiments reveal that 1-WL limited models struggle to make precise estimations of SPs. However, they can generalise to approximate the graph generation processes of networks by comparing their predicted SP with the ones originating from synthetic generators. This first study on GNN-based motif estimation also hints at how using direct SP estimation can help go past the theoretical limitations that motif estimation faces when performed through subgraph counting.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフ表現学習において主要な手法である。
しかし、サブグラフ周波数推定以外にも、ネットワークモチーフ重要度予測(SP)への応用は未検討のままであり、文献に定評のあるベンチマークは存在しない。
本稿では,SP推定をサブグラフ周波数推定に依存しないタスクとしてフレーミングすることで,この問題に対処することを提案する。
提案手法は,周波数カウントから直接SP推定へ移行し,マルチターゲット回帰として問題を変調する。
この再構成は、大きなグラフ上での解釈可能性、安定性、スケーラビリティに最適化されている。
提案手法は,大規模な合成データセットを用いて検証し,実世界のグラフ上でさらに検証する。
実験の結果, 1-WL限定モデルではSPの正確な推定が困難であることが判明した。
しかし、予測SPと合成ジェネレータを起源とするグラフ生成過程を比較することで、ネットワークのグラフ生成過程を一般化することができる。
GNNに基づくモチーフ推定に関する最初の研究は、直接SP推定を用いることが、サブグラフカウントによって行われる場合のモチーフ推定の理論的限界を克服する助けとなることを示唆している。
関連論文リスト
- Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
グラフニューラルネットワーク(GNN)は、近隣情報収集を通じてグラフ構造化データから学習することができる。
レイヤーの数が増えるにつれて、ノード表現は区別不能になり、オーバー・スムーシング(over-smoothing)と呼ばれる。
我々は,textbfPosterior-Sampling-based, Node-distinguish Residual Module (PSNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - From Spectral Graph Convolutions to Large Scale Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は、様々なタスクにうまく適用された強力な概念であることが示されている。
古典グラフ理論の関連部分を含むGCNの定義への道を開いた理論を考察する。
論文 参考訳(メタデータ) (2022-07-12T16:57:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Self-Supervised Representation Learning via Latent Graph Prediction [41.64774038444827]
グラフニューラルネットワークの自己教師付き学習(SSL)は、ラベルのないデータを活用するための有望な方法として浮上している。
ラグラフ(LaGraph)は、遅延グラフ予測に基づく理論的に基礎付けられた予測型SSLフレームワークである。
実験結果から,LaGraphの性能向上と,グラフレベルとノードレベルの両方のタスクにおけるトレーニングサンプルサイズ削減に対する堅牢性を示す。
論文 参考訳(メタデータ) (2022-02-16T21:10:33Z) - Multivariate Time Series Forecasting with Transfer Entropy Graph [5.179058210068871]
我々はニューラルグランガー因果性(CauGNN)を用いた新しいエンドツーエンドディープラーニングモデル、グラフニューラルネットワークを提案する。
各変数はグラフノードと見なされ、各エッジは変数間のカジュアルな関係を表す。
提案したCauGNNを評価するために,実世界の3つのベンチマークデータセットが使用されている。
論文 参考訳(メタデータ) (2020-05-03T20:51:00Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。