Language Models can perform Single-Utterance Self-Correction of Perturbed Reasoning
- URL: http://arxiv.org/abs/2506.15894v1
- Date: Wed, 18 Jun 2025 21:35:44 GMT
- Title: Language Models can perform Single-Utterance Self-Correction of Perturbed Reasoning
- Authors: Sam Silver, Jimin Sun, Ivan Zhang, Sara Hooker, Eddie Kim,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive mathematical reasoning capabilities.<n>Their performance remains brittle to minor variations in problem description and prompting strategy.<n>To better understand self-correction capabilities of recent models, we conduct experiments measuring models' ability to self-correct synthetics.
- Score: 4.768151813962547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive mathematical reasoning capabilities, yet their performance remains brittle to minor variations in problem description and prompting strategy. Furthermore, reasoning is vulnerable to sampling-induced errors which autoregressive models must primarily address using self-correction via additionally-generated tokens. To better understand self-correction capabilities of recent models, we conduct experiments measuring models' ability to self-correct synthetic perturbations introduced into their Chain of Thought (CoT) reasoning. We observe robust single-utterance intrinsic self-correction behavior across a range of open-weight models and datasets, ranging from subtle, implicit corrections to explicit acknowledgments and corrections of errors. Our findings suggest that LLMs, including those not finetuned for long CoT, may possess stronger intrinsic self-correction capabilities than commonly shown in the literature. The presence of this ability suggests that recent "reasoning" model work involves amplification of traits already meaningfully present in models.
Related papers
- Self-rewarding correction for mathematical reasoning [19.480508580498103]
We study self-rewarding reasoning large language models (LLMs)<n>LLMs can simultaneously generate step-by-step reasoning and evaluate the correctness of their outputs during the inference time-without external feedback.<n>We propose a two-staged algorithmic framework for constructing self-rewarding reasoning models using only self-generated data.
arXiv Detail & Related papers (2025-02-26T23:01:16Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Smaller Large Language Models Can Do Moral Self-Correction [11.060513574408658]
Self-correction is one of the most amazing emerging capabilities of Large Language Models (LLMs)<n>Moral self-correction is a post-hoc approach correcting unethical generations without requiring a gradient update.<n>Previous works have shown that LLMs can self-debias, and it has been reported that small models, i.e., those with less than 22B parameters, are not capable of moral self-correction.
arXiv Detail & Related papers (2024-10-30T22:58:57Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction.
In intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown.
We show that intrinsic self-correction can be progressively improved, allowing it to approach a converged state.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.<n>We introduce a methodology designed to examine how input perturbations affect language models across various scales.<n>We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - N-Critics: Self-Refinement of Large Language Models with Ensemble of
Critics [5.516095889257118]
We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination.
This method involves refining model outputs through an ensemble of critics and the model's own feedback.
arXiv Detail & Related papers (2023-10-28T11:22:22Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
We show that prompt-based models for sentence pair classification tasks still suffer from a common pitfall of adopting inferences based on lexical overlap.
We then show that adding a regularization that preserves pretraining weights is effective in mitigating this destructive tendency of few-shot finetuning.
arXiv Detail & Related papers (2021-09-09T10:10:29Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
In RNNs, encoding information in a suboptimal way can impact the quality of representations based on later elements in the sequence.
I propose an augmentation to standard RNNs in form of a gradient-based correction mechanism.
I conduct different experiments in the context of language modeling, where the impact of using such a mechanism is examined in detail.
arXiv Detail & Related papers (2021-01-03T17:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.