N-Critics: Self-Refinement of Large Language Models with Ensemble of
Critics
- URL: http://arxiv.org/abs/2310.18679v2
- Date: Wed, 8 Nov 2023 13:23:20 GMT
- Title: N-Critics: Self-Refinement of Large Language Models with Ensemble of
Critics
- Authors: Sajad Mousavi, Ricardo Luna Guti\'errez, Desik Rengarajan, Vineet
Gundecha, Ashwin Ramesh Babu, Avisek Naug, Antonio Guillen, Soumyendu Sarkar
- Abstract summary: We propose a self-correction mechanism for Large Language Models (LLMs) to mitigate issues such as toxicity and fact hallucination.
This method involves refining model outputs through an ensemble of critics and the model's own feedback.
- Score: 5.516095889257118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a self-correction mechanism for Large Language Models (LLMs) to
mitigate issues such as toxicity and fact hallucination. This method involves
refining model outputs through an ensemble of critics and the model's own
feedback. Drawing inspiration from human behavior, we explore whether LLMs can
emulate the self-correction process observed in humans who often engage in
self-reflection and seek input from others to refine their understanding of
complex topics. Our approach is model-agnostic and can be applied across
various domains to enhance trustworthiness by addressing fairness, bias, and
robustness concerns. We consistently observe performance improvements in LLMs
for reducing toxicity and correcting factual errors.
Related papers
- Self-Correction is More than Refinement: A Learning Framework for Visual and Language Reasoning Tasks [43.96835245022083]
Self-correction that instructs models to refine their outputs presents a promising solution to this issue.
This study investigates the self-correction capabilities of Vision-Language Models during both inference and fine-tuning stages.
arXiv Detail & Related papers (2024-10-05T06:28:54Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - Learning to Refine with Fine-Grained Natural Language Feedback [81.70313509881315]
We propose looking at refinement with feedback as a composition of three distinct LLM competencies.
A key property of the proposed Detect, Critique, Refine ("DCR") method is that the step 2 critique model can give fine-grained feedback about errors.
We show that models of different capabilities benefit from refining with DCR on the task of improving factual consistency of document grounded summaries.
arXiv Detail & Related papers (2024-07-02T16:15:01Z) - Large Language Models have Intrinsic Self-Correction Ability [16.831123666582755]
Large language models suffer from hallucinations that will cause performance degradation.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
arXiv Detail & Related papers (2023-10-16T14:59:10Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITIC allows large language models to validate and amend their own outputs in a manner similar to human interaction with tools.
Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs.
arXiv Detail & Related papers (2023-05-19T15:19:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.