Competing Bandits in Matching Markets via Super Stability
- URL: http://arxiv.org/abs/2506.15926v1
- Date: Thu, 19 Jun 2025 00:03:20 GMT
- Title: Competing Bandits in Matching Markets via Super Stability
- Authors: Soumya Basu,
- Abstract summary: We study bandit learning in matching markets with two-sided reward uncertainty.<n>We demonstrate the advantage of the Extended Gale-Shapley (GS) algorithm over the standard GS algorithm in achieving true stable matchings.
- Score: 3.846293944458337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study bandit learning in matching markets with two-sided reward uncertainty, extending prior research primarily focused on single-sided uncertainty. Leveraging the concept of `super-stability' from Irving (1994), we demonstrate the advantage of the Extended Gale-Shapley (GS) algorithm over the standard GS algorithm in achieving true stable matchings under incomplete information. By employing the Extended GS algorithm, our centralized algorithm attains a logarithmic pessimal stable regret dependent on an instance-dependent admissible gap parameter. This algorithm is further adapted to a decentralized setting with a constant regret increase. Finally, we establish a novel centralized instance-dependent lower bound for binary stable regret, elucidating the roles of the admissible gap and super-stable matching in characterizing the complexity of stable matching with bandit feedback.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits [49.96531901205305]
We analyze $f$-divergence-regularized offline policy learning.<n>For reverse Kullback-Leibler (KL) divergence, we give the first $tildeO(epsilon-1)$ sample complexity under single-policy concentrability.<n>We extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
We investigate the complexity of the generalization bound of the decentralized gradient descent (D-SGDA) algorithm.
Our results analyze the impact of different top factors on the generalization of D-SGDA.
We also balance it with the generalization to obtain the optimal convex-concave setting.
arXiv Detail & Related papers (2023-10-31T11:27:01Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Private Robust Estimation by Stabilizing Convex Relaxations [22.513117502159922]
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
$(epsilon, delta)$-differentially private (DP)
arXiv Detail & Related papers (2021-12-07T07:47:37Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
We provide a simple method to combine bandit algorithms.
Our approach is based on a "meta-UCB" procedure that treats each of $N$ individual bandit algorithms as arms in a higher-level $N$-armed bandit problem.
arXiv Detail & Related papers (2020-12-24T05:36:29Z) - Asymptotic Randomised Control with applications to bandits [0.0]
We consider a general multi-armed bandit problem with correlated elements as a relaxed control problem.
By introducing an entropy regularisation, we obtain a smooth approximation to the value function.
This yields a novel semi-index approximation of the optimal decision process.
arXiv Detail & Related papers (2020-10-14T17:17:48Z) - On Lower Bounds for Standard and Robust Gaussian Process Bandit
Optimization [55.937424268654645]
We consider algorithm-independent lower bounds for the problem of black-box optimization of functions having a bounded norm.
We provide a novel proof technique for deriving lower bounds on the regret, with benefits including simplicity, versatility, and an improved dependence on the error probability.
arXiv Detail & Related papers (2020-08-20T03:48:14Z) - Algorithmic Stability in Fair Allocation of Indivisible Goods Among Two
Agents [8.66798555194688]
We show that it is impossible to achieve exact stability along with a weak notion of fairness and even approximate efficiency.
We propose two relaxations to stability, namely, approximate-stability and weak-approximate-stability.
We present a general characterization result for pairwise maximin share allocations, and in turn use it to design an algorithm that is approximately-stable.
arXiv Detail & Related papers (2020-07-30T03:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.