Noise Fusion-based Distillation Learning for Anomaly Detection in Complex Industrial Environments
- URL: http://arxiv.org/abs/2506.16050v1
- Date: Thu, 19 Jun 2025 06:08:47 GMT
- Title: Noise Fusion-based Distillation Learning for Anomaly Detection in Complex Industrial Environments
- Authors: Jiawen Yu, Jieji Ren, Yang Chang, Qiaojun Yu, Xuan Tong, Boyang Wang, Yan Song, You Li, Xinji Mai, Wenqiang Zhang,
- Abstract summary: Anomaly detection and localization in automated industrial manufacturing can significantly enhance production efficiency and product quality.<n>Existing methods are capable of detecting defects in pre-defined imaging environments.<n>We propose a novel method for anomaly detection and localization in industrial environments.<n>HetNet can learn to model the feature of normal patterns using limited information about local changes.
- Score: 27.72114466968709
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomaly detection and localization in automated industrial manufacturing can significantly enhance production efficiency and product quality. Existing methods are capable of detecting surface defects in pre-defined or controlled imaging environments. However, accurately detecting workpiece defects in complex and unstructured industrial environments with varying views, poses and illumination remains challenging. We propose a novel anomaly detection and localization method specifically designed to handle inputs with perturbative patterns. Our approach introduces a new framework based on a collaborative distillation heterogeneous teacher network (HetNet), an adaptive local-global feature fusion module, and a local multivariate Gaussian noise generation module. HetNet can learn to model the complex feature distribution of normal patterns using limited information about local disruptive changes. We conducted extensive experiments on mainstream benchmarks. HetNet demonstrates superior performance with approximately 10% improvement across all evaluation metrics on MSC-AD under industrial conditions, while achieving state-of-the-art results on other datasets, validating its resilience to environmental fluctuations and its capability to enhance the reliability of industrial anomaly detection systems across diverse scenarios. Tests in real-world environments further confirm that HetNet can be effectively integrated into production lines to achieve robust and real-time anomaly detection. Codes, images and videos are published on the project website at: https://zihuatanejoyu.github.io/HetNet/
Related papers
- Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection [53.137651284042434]
Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples limits the effectiveness of existing methods.<n>We propose Generate grained Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework.<n>GAA generates realistic, diverse, and semantically aligned anomalies using only a small number of samples.
arXiv Detail & Related papers (2025-07-13T12:56:59Z) - Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception [2.9962030276180758]
This paper proposes a novel weakly supervised semantic segmentation framework.<n>It consists of a region-aware class activation map (CAM) and pseudo-label training.<n>The proposed framework effectively bridges the gap between weakly supervised learning and high-precision defect segmentation.
arXiv Detail & Related papers (2025-06-28T12:24:45Z) - Bounding Box-Guided Diffusion for Synthesizing Industrial Images and Segmentation Map [50.21082069320818]
We propose a novel diffusion-based pipeline for generating high-fidelity industrial datasets with minimal supervision.<n>Our approach conditions the diffusion model on enriched bounding box representations to produce precise segmentation masks.<n>Results demonstrate that diffusion-based synthesis can bridge the gap between artificial and real-world industrial data.
arXiv Detail & Related papers (2025-05-06T15:21:36Z) - ISP-AD: A Large-Scale Real-World Dataset for Advancing Industrial Anomaly Detection with Synthetic and Real Defects [0.0]
Industrial Screen Printing Anomaly Detection dataset (ISP-AD)<n>ISP-AD is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor.<n>Experiments on a mixed supervised training approach, incorporating both synthesized and real defects, were conducted.<n>Research findings indicate that supervision by means of both synthetic and accumulated real defects can complement each other, meeting demanded industrial inspection requirements such as low false positive rates and high recall.
arXiv Detail & Related papers (2025-03-06T21:56:31Z) - Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection [31.27483219228598]
Anomaly detection is critical in industrial manufacturing for ensuring product quality and improving efficiency in automated processes.<n>Recent generative models often produce unrealistic anomalies increasing false positives, or require real-world anomaly samples for training.<n>We propose ComGEN, a component-aware and unsupervised framework that addresses the gap in logical anomaly generation.
arXiv Detail & Related papers (2025-02-17T11:54:43Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Exploring Large Vision-Language Models for Robust and Efficient Industrial Anomaly Detection [4.691083532629246]
We propose Vision-Language Anomaly Detection via Contrastive Cross-Modal Training (CLAD)<n> CLAD aligns visual and textual features into a shared embedding space using contrastive learning.<n>We demonstrate that CLAD outperforms state-of-the-art methods in both image-level anomaly detection and pixel-level anomaly localization.
arXiv Detail & Related papers (2024-12-01T17:00:43Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
We present a new framework for Patch Distribution Modeling, PaDiM, to concurrently detect and localize anomalies in images.
PaDiM makes use of a pretrained convolutional neural network (CNN) for patch embedding.
It also exploits correlations between the different semantic levels of CNN to better localize anomalies.
arXiv Detail & Related papers (2020-11-17T17:29:18Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.