論文の概要: A Hybrid DeBERTa and Gated Broad Learning System for Cyberbullying Detection in English Text
- arxiv url: http://arxiv.org/abs/2506.16052v1
- Date: Thu, 19 Jun 2025 06:15:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:04.956348
- Title: A Hybrid DeBERTa and Gated Broad Learning System for Cyberbullying Detection in English Text
- Title(参考訳): 英語テキストにおけるサイバーバブル検出のためのハイブリッドDeBERTaとゲートブロードラーニングシステム
- Authors: Devesh Kumar,
- Abstract要約: 最近の研究によると サイバーいじめは 約54.4%の若者に影響を与えます
本稿では,変圧器モデルにおける文脈理解能力と広範学習システムのパターン認識強度を併用して,効果的なサイバーバブル検出を行うハイブリッドアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.356008609689971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of online communication platforms has created unprecedented opportunities for global connectivity while simultaneously enabling harmful behaviors such as cyberbullying, which affects approximately 54.4\% of teenagers according to recent research. This paper presents a hybrid architecture that combines the contextual understanding capabilities of transformer-based models with the pattern recognition strengths of broad learning systems for effective cyberbullying detection. This approach integrates a modified DeBERTa model augmented with Squeeze-and-Excitation blocks and sentiment analysis capabilities with a Gated Broad Learning System (GBLS) classifier, creating a synergistic framework that outperforms existing approaches across multiple benchmark datasets. The proposed ModifiedDeBERTa + GBLS model achieved good performance on four English datasets: 79.3\% accuracy on HateXplain, 95.41\% accuracy on SOSNet, 91.37\% accuracy on Mendeley-I, and 94.67\% accuracy on Mendeley-II. Beyond performance gains, the framework incorporates comprehensive explainability mechanisms including token-level attribution analysis, LIME-based local interpretations, and confidence calibration, addressing critical transparency requirements in automated content moderation. Ablation studies confirm the meaningful contribution of each architectural component, while failure case analysis reveals specific challenges in detecting implicit bias and sarcastic content, providing valuable insights for future improvements in cyberbullying detection systems.
- Abstract(参考訳): 最近の研究によると、オンラインコミュニケーションプラットフォームの普及は、グローバル接続のための前例のない機会を生み出し、同時にサイバーいじめのような有害な行為を可能とした。
本稿では,変圧器モデルにおける文脈理解能力と広範学習システムのパターン認識強度を併用して,効果的なサイバーバブル検出を行うハイブリッドアーキテクチャを提案する。
このアプローチは、Squeeze-and-Excitationブロックと感情分析機能を拡張したDeBERTaモデルと、Gated Broad Learning System(GBLS)分類器を統合し、既存のアプローチを複数のベンチマークデータセットで上回る相乗的フレームワークを作成する。
提案されたModifiedDeBERTa + GBLSモデルは、HateXplainの79.3\%精度、SOSNetの95.41\%精度、Mendley-Iの91.37\%精度、Mendley-IIの94.67\%精度の4つの英語データセットで優れた性能を達成した。
パフォーマンス向上以外にも、トークンレベルの属性分析、LIMEベースのローカル解釈、信頼性校正など、包括的な説明可能性メカニズムが組み込まれており、自動コンテンツモデレーションにおける重要な透明性要件に対処している。
アブレーション研究は、各アーキテクチャコンポーネントの有意義な貢献を裏付ける一方で、障害ケース分析は、暗黙の偏見とサーカシックなコンテンツを検出する上で、特定の課題を明らかにし、サイバーバブル検出システムにおける将来の改善のための貴重な洞察を提供する。
関連論文リスト
- Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy [0.9999629695552196]
本研究は、ストロークを予測するように設計されたデータ駆動型、解釈可能な機械学習フレームワークを開発し、検証する。
定期的に収集された人口統計、生活習慣、臨床変数は4,981件の公的なコホートから得られた。
提案したモデルでは精度97.2%、F1スコア97.15%が達成され、先行する個人モデルと比較して大幅に向上した。
論文 参考訳(メタデータ) (2025-05-18T21:46:45Z) - A Gradient-Optimized TSK Fuzzy Framework for Explainable Phishing Detection [0.0]
既存のフィッシング検出手法は高い精度と説明可能性の両立に苦慮している。
勾配に基づく手法により最適化された1次高木・スゲノ・カンファジィ推論モデルに基づく新しいフィッシングURL検出システムを提案する。
論文 参考訳(メタデータ) (2025-04-25T18:31:05Z) - TWSSenti: A Novel Hybrid Framework for Topic-Wise Sentiment Analysis on Social Media Using Transformer Models [0.0]
本研究では,感情分類の精度と頑健性を改善するために,トランスフォーマーモデルを組み合わせたハイブリッドフレームワークについて検討する。
このフレームワークは、ノイズの多いデータ、コンテキストのあいまいさ、さまざまなデータセット間の一般化といった課題に対処する。
この研究は、ソーシャルメディアのモニタリング、顧客感情分析、世論の追跡など、現実世界のタスクへの適用性を強調している。
論文 参考訳(メタデータ) (2025-04-14T05:44:11Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
半正直な設定で一貫したバックドア検出フレームワークを提案する。
本手法は,SoTAベースラインよりも5.4%,1.6%,11.9%の精度で検出性能が向上する。
特に、マルチモーダルな大規模言語モデルにおいて、バックドアを効果的に検出するのは、これが初めてである。
論文 参考訳(メタデータ) (2025-03-21T06:12:06Z) - LENS-XAI: Redefining Lightweight and Explainable Network Security through Knowledge Distillation and Variational Autoencoders for Scalable Intrusion Detection in Cybersecurity [0.0]
本研究は軽量説明可能ネットワークセキュリティフレームワーク(LENS-XAI)を紹介する。
LENS-XAIは、堅牢な侵入検知と、拡張された解釈可能性とスケーラビリティを組み合わせる。
本研究は, 計算効率, 特徴解釈可能性, 実世界の応用性に対処することで, IDSの進歩に大きく貢献する。
論文 参考訳(メタデータ) (2025-01-01T10:00:49Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
本稿では、より説明可能なアクティベーションヒートマップを取得し、同時にモデル性能を向上させるフレームワークを提案する。
具体的には、モデル学習において、トレーニングサンプルを適応的に重み付けするために、新しいメトリクス、すなわち説明整合性を導入する。
そこで,本フレームワークは,これらのトレーニングサンプルに深い注意を払ってモデル学習を促進する。
論文 参考訳(メタデータ) (2024-08-08T17:20:08Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
アスペクトベースの感情分析(ABSA)は、ソーシャルメディアのテキストやレビューの背後にある製品やサービスの特定の側面に対して、特定の感情の極性を自動的に推測することを目的としている。
我々は、モデル、データ、トレーニングを含むあらゆる可能な角度からボトルネックを体系的に再考することで、ABSAの堅牢性を高めることを提案する。
論文 参考訳(メタデータ) (2023-04-19T11:07:43Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。