Stepping Out of Similar Semantic Space for Open-Vocabulary Segmentation
- URL: http://arxiv.org/abs/2506.16058v2
- Date: Tue, 24 Jun 2025 03:11:42 GMT
- Title: Stepping Out of Similar Semantic Space for Open-Vocabulary Segmentation
- Authors: Yong Liu, SongLi Wu, Sule Bai, Jiahao Wang, Yitong Wang, Yansong Tang,
- Abstract summary: Open-vocabulary segmentation aims to achieve segmentation of arbitrary categories given unlimited text inputs as guidance.<n>We present a new benchmark named OpenBench that differs significantly from the training semantics.<n>We also propose a method named OVSNet to improve the segmentation performance for diverse and open scenarios.
- Score: 34.00709332072491
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Open-vocabulary segmentation aims to achieve segmentation of arbitrary categories given unlimited text inputs as guidance. To achieve this, recent works have focused on developing various technical routes to exploit the potential of large-scale pre-trained vision-language models and have made significant progress on existing benchmarks. However, we find that existing test sets are limited in measuring the models' comprehension of ``open-vocabulary" concepts, as their semantic space closely resembles the training space, even with many overlapping categories. To this end, we present a new benchmark named OpenBench that differs significantly from the training semantics. It is designed to better assess the model's ability to understand and segment a wide range of real-world concepts. When testing existing methods on OpenBench, we find that their performance diverges from the conclusions drawn on existing test sets. In addition, we propose a method named OVSNet to improve the segmentation performance for diverse and open scenarios. Through elaborate fusion of heterogeneous features and cost-free expansion of the training space, OVSNet achieves state-of-the-art results on both existing datasets and our proposed OpenBench. Corresponding analysis demonstrate the soundness and effectiveness of our proposed benchmark and method.
Related papers
- Training-Free Class Purification for Open-Vocabulary Semantic Segmentation [72.87707878910896]
FreeCP is a training-free class purification framework for semantic segmentation.<n>We conduct experiments across eight benchmarks to validate FreeCP's effectiveness.<n>Results demonstrate that FreeCP, as a plug-and-play module, significantly boosts segmentation performance when combined with other OVSS methods.
arXiv Detail & Related papers (2025-08-01T11:55:12Z) - Semantic Correspondence: Unified Benchmarking and a Strong Baseline [14.012377730820342]
We present the first extensive survey of semantic correspondence methods.<n>We aggregate and summarize the results of methods in literature across various benchmarks into a unified comparative table.<n>We propose a simple yet effective baseline that achieves state-of-the-art performance on multiple benchmarks.
arXiv Detail & Related papers (2025-05-23T16:07:16Z) - Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation [0.0]
LangSeg is a novel semantic segmentation method that leverages context-sensitive, fine-grained subclass descriptors.<n>We evaluate LangSeg on two challenging datasets, ADE20K and COCO-Stuff, where it outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-01-27T20:02:12Z) - Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
In this paper, we focus on rethinking and improving the example selection strategy.
We first demonstrate that ICL-based segmentation models are sensitive to different contexts.
Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation.
arXiv Detail & Related papers (2024-07-14T15:02:54Z) - Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation [19.20874993309959]
vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks.
We propose a baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP)
Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature.
arXiv Detail & Related papers (2024-04-12T01:08:04Z) - Training-Free Open-Vocabulary Segmentation with Offline Diffusion-Augmented Prototype Generation [44.008094698200026]
FreeDA is a training-free diffusion-augmented method for open-vocabulary semantic segmentation.
FreeDA achieves state-of-the-art performance on five datasets.
arXiv Detail & Related papers (2024-04-09T18:00:25Z) - Diffusion Models for Open-Vocabulary Segmentation [79.02153797465324]
OVDiff is a novel method that leverages generative text-to-image diffusion models for unsupervised open-vocabulary segmentation.
It relies solely on pre-trained components and outputs the synthesised segmenter directly, without training.
arXiv Detail & Related papers (2023-06-15T17:51:28Z) - Open-vocabulary Panoptic Segmentation with Embedding Modulation [71.15502078615587]
Open-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world.
Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results.
We propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panopticon.
arXiv Detail & Related papers (2023-03-20T17:58:48Z) - Global Knowledge Calibration for Fast Open-Vocabulary Segmentation [124.74256749281625]
We introduce a text diversification strategy that generates a set of synonyms for each training category.
We also employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP.
Our proposed model achieves robust generalization performance across various datasets.
arXiv Detail & Related papers (2023-03-16T09:51:41Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.