論文の概要: Large Language Models are Near-Optimal Decision-Makers with a Non-Human Learning Behavior
- arxiv url: http://arxiv.org/abs/2506.16163v1
- Date: Thu, 19 Jun 2025 09:32:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.016107
- Title: Large Language Models are Near-Optimal Decision-Makers with a Non-Human Learning Behavior
- Title(参考訳): 大規模言語モデルは、非Human学習行動を持つほぼ最適決定因子である
- Authors: Hao Li, Gengrui Zhang, Petter Holme, Shuyue Hu, Zhen Wang,
- Abstract要約: 大規模言語モデル(LLM)は、AIをサポートする意思決定の性質と範囲を変えてきた。
しかし、人間に比べて決定を下す過程は、まだよく理解されていない。
本研究では,実世界の意思決定の3つの中核領域にわたる5つのLLMの意思決定行動について検討した。
- 参考スコア(独自算出の注目度): 12.817902593079351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human decision-making belongs to the foundation of our society and civilization, but we are on the verge of a future where much of it will be delegated to artificial intelligence. The arrival of Large Language Models (LLMs) has transformed the nature and scope of AI-supported decision-making; however, the process by which they learn to make decisions, compared to humans, remains poorly understood. In this study, we examined the decision-making behavior of five leading LLMs across three core dimensions of real-world decision-making: uncertainty, risk, and set-shifting. Using three well-established experimental psychology tasks designed to probe these dimensions, we benchmarked LLMs against 360 newly recruited human participants. Across all tasks, LLMs often outperformed humans, approaching near-optimal performance. Moreover, the processes underlying their decisions diverged fundamentally from those of humans. On the one hand, our finding demonstrates the ability of LLMs to manage uncertainty, calibrate risk, and adapt to changes. On the other hand, this disparity highlights the risks of relying on them as substitutes for human judgment, calling for further inquiry.
- Abstract(参考訳): 人間による意思決定は、私たちの社会と文明の基盤に属するが、私たちは、その大部分が人工知能に委譲される未来に近づいている。
大規模言語モデル(LLM)の到来は、AIが支援する意思決定の性質と範囲を変えたが、人間に比べて意思決定を学ぶ過程は、まだ理解されていない。
本研究では,実世界の意思決定の3つの中核的な側面(不確実性,リスク,セットシフト)にまたがる5つのLLMの意思決定行動について検討した。
これらの次元を探索するために設計された3つの確立された心理学的タスクを用いて、新たに採用した360人の被験者に対してLSMをベンチマークした。
すべてのタスクにおいて、LLMは人間よりも優れ、ほぼ最適なパフォーマンスに近づいた。
さらに、彼らの決定の根底にあるプロセスは、基本的に人間のものから分岐した。
一方, LLMが不確実性を管理し, リスクを校正し, 変化に適応できることを示す。
一方で、この格差は、人間の判断の代用としてそれらに頼るリスクを浮き彫りにし、さらなる調査を求める。
関連論文リスト
- Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making [55.2480439325792]
複数の専門分野にまたがってタスクを適応的に委譲するLLM決定フレームワークを提案する。
まず、deferral Policyは、ベースモデルの回答を受け入れるか、あるいは大きなモデルでそれを再生するかを決定する。
第2に、禁忌ポリシーは、カスケードモデル応答が十分に確実であるか、または人間の介入を必要とするかを判定する。
論文 参考訳(メタデータ) (2025-06-13T15:36:22Z) - Comparing Exploration-Exploitation Strategies of LLMs and Humans: Insights from Standard Multi-armed Bandit Tasks [6.355245936740126]
大規模言語モデル(LLM)は、シーケンシャルな意思決定タスクにおいて、人間の振る舞いをシミュレートしたり、自動化したりするためにますます使われている。
我々は、不確実性の下での動的意思決定の基本的な側面である、探査・探索(E&E)トレードオフに焦点を当てる。
推論は、ランダムな探索と指向的な探索の混在を特徴とする、より人間的な行動へとLSMをシフトさせる。
論文 参考訳(メタデータ) (2025-05-15T02:09:18Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context [5.361970694197912]
本稿では,大規模言語モデル(LLM)の意思決定行動を評価するための行動経済学に基づく枠組みを提案する。
本稿では,ChatGPT-4.0-Turbo,Claude-3-Opus,Gemini-1.0-proの3つの商用LCMにおけるリスク嗜好,確率重み付け,損失回避の程度を推定する。
以上の結果から,LSMはリスク回避や損失回避といった人間に類似したパターンを呈し,その傾向は小さすぎることが示唆された。
論文 参考訳(メタデータ) (2024-06-10T02:14:19Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Character is Destiny: Can Role-Playing Language Agents Make Persona-Driven Decisions? [59.0123596591807]
我々は、ペルソナ駆動意思決定におけるLarge Language Models(LLM)の能力をベンチマークする。
高品質な小説において, LLM が先行する物語のキャラクターの判断を予測できるかどうかを検討する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は残されている。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。