SGIC: A Self-Guided Iterative Calibration Framework for RAG
- URL: http://arxiv.org/abs/2506.16172v1
- Date: Thu, 19 Jun 2025 09:45:13 GMT
- Title: SGIC: A Self-Guided Iterative Calibration Framework for RAG
- Authors: Guanhua Chen, Yutong Yao, Lidia S. Chao, Xuebo Liu, Derek F. Wong,
- Abstract summary: Large language models (LLMs) capitalize on their robust in-context reasoning.<n>We present a new framework that employs uncertainty scores as a tool.<n>We also introduce an innovative approach for constructing an iterative self-calibration training set.
- Score: 45.17496149653415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research in retrieval-augmented generation (RAG) has concentrated on retrieving useful information from candidate documents. However, numerous methodologies frequently neglect the calibration capabilities of large language models (LLMs), which capitalize on their robust in-context reasoning prowess. This work illustrates that providing LLMs with specific cues substantially improves their calibration efficacy, especially in multi-round calibrations. We present a new SGIC: Self-Guided Iterative Calibration Framework that employs uncertainty scores as a tool. Initially, this framework calculates uncertainty scores to determine both the relevance of each document to the query and the confidence level in the responses produced by the LLMs. Subsequently, it reevaluates these scores iteratively, amalgamating them with prior responses to refine calibration. Furthermore, we introduce an innovative approach for constructing an iterative self-calibration training set, which optimizes LLMs to efficiently harness uncertainty scores for capturing critical information and enhancing response accuracy. Our proposed framework significantly improves performance on both closed-source and open-weight LLMs.
Related papers
- Beyond Binary Rewards: Training LMs to Reason About Their Uncertainty [59.97939500426759]
This paper describes RLCR, an approach to training reasoning models that jointly improves accuracy and confidence estimation.<n>We show that across diverse datasets, RLCR substantially improves calibration with no loss in accuracy.<n>We also demonstrate that verbalized confidence can be leveraged at test time to improve accuracy and calibration.
arXiv Detail & Related papers (2025-07-22T17:56:01Z) - Deliberative Searcher: Improving LLM Reliability via Reinforcement Learning with constraints [18.10515528600634]
We propose textbfDeliberative Searcher, the first framework to integrate certainty calibration with retrieval-based search for open-domain question answering.<n>The agent performs multi-step reflection and verification over Wikipedia data and is trained with a reinforcement learning algorithm that optimize for accuracy under a soft reliability constraint.
arXiv Detail & Related papers (2025-07-22T16:09:34Z) - Towards Objective Fine-tuning: How LLMs' Prior Knowledge Causes Potential Poor Calibration? [19.38577744626441]
Large Language Models (LLMs) often demonstrate poor calibration with confidence scores misaligned with actual performance.<n>Our research reveals that LLMs' prior knowledge causes potential poor calibration due to the ubiquitous presence of known data in real-world fine-tuning.<n>We propose CogCalib, a cognition-aware framework that applies targeted learning strategies according to the model's prior knowledge.
arXiv Detail & Related papers (2025-05-27T08:51:31Z) - Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models [0.6091702876917281]
Large Language Models (LLMs) show remarkable proficiency in natural language tasks.<n>Overconfidence-misalignment between predicted confidence and true correctness poses significant risks in critical decision-making applications.<n>We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering datasets.
arXiv Detail & Related papers (2025-02-16T07:46:09Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation [18.815226646364476]
Existing calibration methods for large language models (LLMs) focus on estimating or eliciting individual confidence without taking full advantage of the "Collective Wisdom"
We propose Collaborative, a post-hoc training-free calibration strategy that leverages the collaborative and expressive capabilities of multiple tool-augmented LLM agents in a simulated group deliberation process.
arXiv Detail & Related papers (2024-04-14T02:40:43Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.