Integrating Generative Adversarial Networks and Convolutional Neural Networks for Enhanced Traffic Accidents Detection and Analysis
- URL: http://arxiv.org/abs/2506.16186v1
- Date: Thu, 19 Jun 2025 10:06:20 GMT
- Title: Integrating Generative Adversarial Networks and Convolutional Neural Networks for Enhanced Traffic Accidents Detection and Analysis
- Authors: Zhenghao Xi, Xiang Liu, Yaqi Liu, Yitong Cai, Yangyu Zheng,
- Abstract summary: This research addresses the issues of supervised monitoring and data deficiency in accident detection systems.<n>The motivation arises from rising statistics in the number of car accidents worldwide.<n>The proposed framework suits traffic safety applications due to its high real-time accident detection capabilities.
- Score: 4.174922225547306
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accident detection using Closed Circuit Television (CCTV) footage is one of the most imperative features for enhancing transport safety and efficient traffic control. To this end, this research addresses the issues of supervised monitoring and data deficiency in accident detection systems by adapting excellent deep learning technologies. The motivation arises from rising statistics in the number of car accidents worldwide; this calls for innovation and the establishment of a smart, efficient and automated way of identifying accidents and calling for help to save lives. Addressing the problem of the scarcity of data, the presented framework joins Generative Adversarial Networks (GANs) for synthesizing data and Convolutional Neural Networks (CNN) for model training. Video frames for accidents and non-accidents are collected from YouTube videos, and we perform resizing, image enhancement and image normalisation pixel range adjustments. Three models are used: CNN, Fine-tuned Convolutional Neural Network (FTCNN) and Vision Transformer (VIT) worked best for detecting accidents from CCTV, obtaining an accuracy rate of 94% and 95%, while the CNN model obtained 88%. Such results show that the proposed framework suits traffic safety applications due to its high real-time accident detection capabilities and broad-scale applicability. This work lays the foundation for intelligent surveillance systems in the future for real-time traffic monitoring, smart city framework, and integration of intelligent surveillance systems into emergency management systems.
Related papers
- A Dynamic Transformer Network for Vehicle Detection [57.4144097001218]
We present a dynamic Transformer network for vehicle detection (DTNet)<n>DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector.<n>To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection.
arXiv Detail & Related papers (2025-06-03T11:29:35Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Enhancing Road Safety: Real-Time Detection of Driver Distraction through Convolutional Neural Networks [0.0]
This study seeks to identify the most efficient model for real-time detection of driver distractions.
The ultimate aim is to incorporate the findings into vehicle safety systems, significantly boosting their capability to prevent accidents triggered by inattention.
arXiv Detail & Related papers (2024-05-28T03:34:55Z) - Smart City Transportation: Deep Learning Ensemble Approach for Traffic
Accident Detection [0.0]
We introduce the I3D-CONVLSTM2D model architecture, a lightweight solution tailored explicitly for accident detection in smart city traffic surveillance systems.
Our experimental study's empirical analysis underscores our approach's efficacy, with the I3D-CONVLSTM2D RGB + Optical-Flow (Trainable) model outperforming its counterparts, achieving an impressive 87% Mean Average Precision (MAP)
Our research illuminates the path towards a sophisticated vision-based accident detection system primed for real-time integration into edge IoT devices within smart urban infrastructures.
arXiv Detail & Related papers (2023-10-16T03:47:08Z) - AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities [0.0]
This paper presents a comprehensive analysis of traffic accidents in different regions across the United States.
To address the challenges of accident detection and traffic analysis, this paper proposes a framework that uses traffic surveillance cameras and action recognition systems.
arXiv Detail & Related papers (2023-07-22T17:08:13Z) - TAP: A Comprehensive Data Repository for Traffic Accident Prediction in
Road Networks [36.975060335456035]
Existing machine learning approaches tend to focus on predicting traffic accidents in isolation.
To incorporate graph structure information, Graph Neural Networks (GNNs) can be naturally applied.
Applying GNNs to the accident prediction problem faces challenges due to the lack of suitable graph-structured traffic accident datasets.
arXiv Detail & Related papers (2023-04-17T22:18:58Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video
Surveillance [2.1076255329439304]
Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes.
After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work.
arXiv Detail & Related papers (2022-09-26T03:00:50Z) - Review on Action Recognition for Accident Detection in Smart City
Transportation Systems [0.0]
Monitoring traffic flows in a smart city using different surveillance cameras can play a significant role in recognizing accidents and alerting first responders.
The utilization of action recognition (AR) in computer vision tasks has contributed towards high-precision applications in video surveillance, medical imaging, and digital signal processing.
This paper provides potential research direction to develop and integrate accident detection systems for autonomous cars and public traffic safety systems.
arXiv Detail & Related papers (2022-08-20T03:21:44Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator.
We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX)
arXiv Detail & Related papers (2020-08-05T01:41:10Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.