An efficient neuromorphic approach for collision avoidance combining Stack-CNN with event cameras
- URL: http://arxiv.org/abs/2506.16436v1
- Date: Thu, 19 Jun 2025 16:15:05 GMT
- Title: An efficient neuromorphic approach for collision avoidance combining Stack-CNN with event cameras
- Authors: Antonio Giulio Coretti, Mattia Varile, Mario Edoardo Bertaina,
- Abstract summary: This work presents an innovative collision avoidance system utilizing event-based cameras.<n>The system, employing a Stack-CNN algorithm (previously used for meteor detection), analyzes real-time event-based camera data to detect faint moving objects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Space debris poses a significant threat, driving research into active and passive mitigation strategies. This work presents an innovative collision avoidance system utilizing event-based cameras - a novel imaging technology well-suited for Space Situational Awareness (SSA) and Space Traffic Management (STM). The system, employing a Stack-CNN algorithm (previously used for meteor detection), analyzes real-time event-based camera data to detect faint moving objects. Testing on terrestrial data demonstrates the algorithm's ability to enhance signal-to-noise ratio, offering a promising approach for on-board space imaging and improving STM/SSA operations.
Related papers
- An Edge AI Solution for Space Object Detection [29.817805350971366]
We propose an Edge AI solution based on deep-learning-based vision sensing for space object detection tasks.<n>We evaluate the performance of these models across various realistic space object detection scenarios.
arXiv Detail & Related papers (2025-05-08T14:51:19Z) - Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - Markers Identification for Relative Pose Estimation of an Uncooperative Target [0.0]
This paper introduces a novel method to detect structural markers on the European Space Agency's (ESA) Environmental Satellite (ENVISAT) for safe de-orbiting.
Advanced image pre-processing techniques, including noise addition and blurring, are employed to improve marker detection accuracy and robustness.
arXiv Detail & Related papers (2024-07-30T03:20:54Z) - SFOD: Spiking Fusion Object Detector [10.888008544975662]
Spiking Fusion Object Detector (SFOD) is a simple and efficient approach to SNN-based object detection.
We design a Spiking Fusion Module, achieving the first-time fusion of feature maps from different scales in SNNs applied to event cameras.
We establish state-of-the-art classification results based on SNNs, achieving 93.7% accuracy on the NCAR dataset.
arXiv Detail & Related papers (2024-03-22T13:24:50Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
Event cameras offer new opportunities compared to standard action recognition in RGB videos.
In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame.
In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss ($mathcalL_EC$) and event-specific augmentations.
arXiv Detail & Related papers (2023-08-25T23:51:07Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
This paper presents a methodology for generating event-based vision datasets from optimal landing trajectories.
We construct sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility.
We demonstrate that the pipeline can generate realistic event-based representations of surface features by constructing a dataset of 500 trajectories.
arXiv Detail & Related papers (2023-08-01T09:14:20Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
We demonstrate an application where event cameras excel: accurately estimating the impact location of fast-moving objects.
We introduce a lightweight event representation called Binary Event History Image (BEHI) to encode event data at low latency.
We show that the system is capable of achieving a success rate of 81% in catching balls targeted at different locations, with a velocity of up to 13 m/s even on compute-constrained embedded platforms.
arXiv Detail & Related papers (2023-04-14T15:23:28Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task.
The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5) is tested.
The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.
arXiv Detail & Related papers (2023-01-22T04:53:38Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.