An Edge AI Solution for Space Object Detection
- URL: http://arxiv.org/abs/2505.13468v1
- Date: Thu, 08 May 2025 14:51:19 GMT
- Title: An Edge AI Solution for Space Object Detection
- Authors: Wenxuan Zhang, Peng Hu,
- Abstract summary: We propose an Edge AI solution based on deep-learning-based vision sensing for space object detection tasks.<n>We evaluate the performance of these models across various realistic space object detection scenarios.
- Score: 29.817805350971366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective Edge AI for space object detection (SOD) tasks that can facilitate real-time collision assessment and avoidance is essential with the increasing space assets in near-Earth orbits. In SOD, low Earth orbit (LEO) satellites must detect other objects with high precision and minimal delay. We explore an Edge AI solution based on deep-learning-based vision sensing for SOD tasks and propose a deep learning model based on Squeeze-and-Excitation (SE) layers, Vision Transformers (ViT), and YOLOv9 framework. We evaluate the performance of these models across various realistic SOD scenarios, demonstrating their ability to detect multiple satellites with high accuracy and very low latency.
Related papers
- AI-Driven Collaborative Satellite Object Detection for Space Sustainability [29.817805350971366]
The growing density of satellites in low-Earth orbit (LEO) presents serious challenges to space sustainability.<n>Traditional ground-based tracking systems are constrained by latency and coverage limitations.<n>We propose a novel satellite clustering framework that enables the collaborative execution of deep learning (DL)-based space object detection tasks across multiple satellites.
arXiv Detail & Related papers (2025-08-01T16:31:55Z) - NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments [56.35569661650558]
We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation.<n>Rather than constructing a global map, NOVA formulates perception, estimation, and control entirely in the target's reference frame.<n>We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss.
arXiv Detail & Related papers (2025-06-23T14:28:30Z) - You Only Crash Once v2: Perceptually Consistent Strong Features for One-Stage Domain Adaptive Detection of Space Terrain [4.339510167603377]
In-situ detection of planetary, lunar, and small-body surface terrain is crucial for autonomous spacecraft applications.<n>Unsupervised Domain Adaptation (UDA) offers a promising solution by facilitating model training with disparate data sources.<n>We propose novel additions to the VSA scheme that enhance terrain detection capabilities under UDA.
arXiv Detail & Related papers (2025-01-23T14:58:49Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.<n>Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.<n>We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
arXiv Detail & Related papers (2024-12-24T07:28:10Z) - Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection [73.85890512959861]
We propose a task-agnostic framework to unify Salient Object Detection (SOD) and Camouflaged Object Detection (COD)<n>We design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps.<n> Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings.
arXiv Detail & Related papers (2024-12-22T03:25:43Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - SatSplatYOLO: 3D Gaussian Splatting-based Virtual Object Detection Ensembles for Satellite Feature Recognition [0.0]
We present an approach for mapping geometries and high-confidence detection of components of unknown, non-cooperative satellites on orbit.
We implement accelerated 3D Gaussian splatting to learn a 3D representation of the satellite, render virtual views of the target, and ensemble the YOLOv5 object detector over the virtual views.
arXiv Detail & Related papers (2024-06-04T17:54:20Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
This paper proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD, built upon the mainstream pseudo-labeling framework.
Our experiments show that when trained with the two proposed losses, SOOD surpasses the state-of-the-art SSOD methods under various settings on the DOTA-v1.5 benchmark.
arXiv Detail & Related papers (2023-04-10T11:10:42Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task.
The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5) is tested.
The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.
arXiv Detail & Related papers (2023-01-22T04:53:38Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Space Non-cooperative Object Active Tracking with Deep Reinforcement
Learning [1.212848031108815]
We propose an end-to-end active visual tracking method based on DQN algorithm, named as DRLAVT.
It can guide the chasing spacecraft approach to arbitrary space non-cooperative target merely relied on color or RGBD images.
It significantly outperforms position-based visual servoing baseline algorithm that adopts state-of-the-art 2D monocular tracker, SiamRPN.
arXiv Detail & Related papers (2021-12-18T06:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.