論文の概要: Overfitting in Histopathology Model Training: The Need for Customized Architectures
- arxiv url: http://arxiv.org/abs/2506.16631v1
- Date: Thu, 19 Jun 2025 22:05:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.275468
- Title: Overfitting in Histopathology Model Training: The Need for Customized Architectures
- Title(参考訳): 病理モデルトレーニングにおけるオーバーフィッティング - カスタマイズアーキテクチャの必要性
- Authors: Saghir Alfasly, Ghazal Alabtah, H. R. Tizhoosh,
- Abstract要約: 画像解析のための微調整された大規模モデルでは, 病理組織学的なタスクに適用した場合, 最適な性能と大幅な過度なオーバーフィッティングが期待できる。
本研究は,病理組織像解析に特化して設計されたカスタマイズアーキテクチャの必要性を強調した。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the critical problem of overfitting in deep learning models applied to histopathology image analysis. We show that simply adopting and fine-tuning large-scale models designed for natural image analysis often leads to suboptimal performance and significant overfitting when applied to histopathology tasks. Through extensive experiments with various model architectures, including ResNet variants and Vision Transformers (ViT), we show that increasing model capacity does not necessarily improve performance on histopathology datasets. Our findings emphasize the need for customized architectures specifically designed for histopathology image analysis, particularly when working with limited datasets. Using Oesophageal Adenocarcinomas public dataset, we demonstrate that simpler, domain-specific architectures can achieve comparable or better performance while minimizing overfitting.
- Abstract(参考訳): 本研究では,病理組織像解析に応用した深層学習モデルにおけるオーバーフィッティングの問題点について検討した。
自然画像解析のために設計された大規模モデルの導入と微調整は、しばしば、病理学のタスクに適用した場合、最適以下の性能と大幅な過度なオーバーフィッティングをもたらすことを示す。
ResNet variants や Vision Transformer (ViT) など,様々なモデルアーキテクチャによる広範な実験を通じて,モデル容量の増加は必ずしも病理組織学データセットのパフォーマンスを向上するとは限らないことを示す。
本研究は,特に限られたデータセットを扱う場合の病理組織像解析に特化して設計されたアーキテクチャの必要性を強調した。
Oephag Adenocarcinomas public datasetを用いて、オーバーフィッティングを最小化しながら、よりシンプルでドメイン固有のアーキテクチャが同等またはより良いパフォーマンスを達成することを実証した。
関連論文リスト
- Investigating Zero-Shot Diagnostic Pathology in Vision-Language Models with Efficient Prompt Design [7.509731425152396]
病理組織学における視覚言語モデル(VLM)の3つの状態の体系的調査と解析を行った。
我々は、ドメインの特異性、解剖学的精度、命令フレーミング、出力制約を体系的に変化させる包括的なプロンプトエンジニアリングフレームワークを開発する。
以上の結果から,正確な解剖学的基準が得られた場合,CONCHモデルが最も精度が高いため,迅速な工学がモデル性能に大きく影響することが示唆された。
論文 参考訳(メタデータ) (2025-04-30T19:01:06Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
機能抽出のためのバックボーンモデルと、関連性推定のためのエンドツーエンドシステムアーキテクチャの2つの重要な側面に焦点を当てる。
従来の用語ベースの手法から現代のニューラルアプローチまで,特にトランスフォーマーベースのモデルとそれに続く大規模言語モデル(LLM)の影響が注目されている。
我々は、パフォーマンスとスケーラビリティのアーキテクチャ最適化、マルチモーダル、マルチランガルデータの処理、従来の検索パラダイムを超えた新しいアプリケーションドメインへの適応など、新たな課題と今後の方向性について議論することで結論付けた。
論文 参考訳(メタデータ) (2025-02-20T18:42:58Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
複素・非線形・雑音に隠れた潜在低次元構造を持つ高次元データセットをモデル化する課題に取り組む。
我々のアプローチは、非パラメトリック回帰、因子モデル、高次元回帰のためのニューラルネットワークの概念のシームレスな統合を可能にする。
論文 参考訳(メタデータ) (2025-02-16T23:13:55Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
本稿では,異なる設計選択がディープラーニングに基づく天気予報システムに与える影響を系統的に分析する。
UNet、完全畳み込みアーキテクチャ、トランスフォーマーベースモデルなどの固定グリッドアーキテクチャについて検討する。
固定グリッドモデルの強靭な性能とグリッド不変アーキテクチャの柔軟性を組み合わせたハイブリッドシステムを提案する。
論文 参考訳(メタデータ) (2024-10-09T22:25:50Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
病理組織像分類は様々な疾患の正確な同定と診断に重要である。
合成画像は、既存のデータセットを効果的に増強し、最終的に下流の病理組織像分類タスクの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-09-24T12:02:55Z) - Benchmarking Retinal Blood Vessel Segmentation Models for Cross-Dataset and Cross-Disease Generalization [5.237321836999284]
公開されているFIVESファウンダスイメージデータセット上で,5つの公開モデルをトレーニングし,評価する。
画像の品質がセグメンテーションの結果を決定する重要な要因であることがわかった。
論文 参考訳(メタデータ) (2024-06-21T09:12:34Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
バイオメディカルイメージングにおいて広く使われているU-Netスタイルのアーキテクチャを解析する手法を開発した。
我々は,プルーニングが性能を低下させることなく,少なくとも70%圧縮できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-12T22:05:01Z) - Performance Analysis of UNet and Variants for Medical Image Segmentation [1.5410557873153836]
本研究の目的は,深層学習モデル,特にUNetアーキテクチャとその変種に着目した医用画像セグメンテーションの応用を検討することである。
その結果,深層ネットワーク層で拡張された標準UNetは,有能な医用画像セグメンテーションモデルであることが判明した。
Res-UNetとAttention Res-UNetアーキテクチャは、特に細かな画像の詳細を扱う際に、よりスムーズな収束と優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-09-22T17:20:40Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。