論文の概要: Generalizable Agent Modeling for Agent Collaboration-Competition Adaptation with Multi-Retrieval and Dynamic Generation
- arxiv url: http://arxiv.org/abs/2506.16718v1
- Date: Fri, 20 Jun 2025 03:28:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.324019
- Title: Generalizable Agent Modeling for Agent Collaboration-Competition Adaptation with Multi-Retrieval and Dynamic Generation
- Title(参考訳): エージェント協調競争適応のための汎用エージェントモデリング
- Authors: Chenxu Wang, Yonggang Jin, Cheng Hu, Youpeng Zhao, Zipeng Dai, Jian Zhao, Shiyu Huang, Liuyu Xiang, Junge Zhang, Zhaofeng He,
- Abstract要約: ひとつのエージェントを新しいマルチエージェントシステムに適用することは、課題をもたらし、さまざまなタスク、環境、未知のチームメイトや相手とのインタラクションを調整する必要がある。
本稿では,多種多様なシナリオにまたがってエージェントを一般化するためのエージェント評価を行う,より包括的なエージェント協調適応手法を提案する。
ACCAでは、エージェントはタスクや環境の変化を調整し、目に見えないチームメイトと協力し、未知の相手と競う。
- 参考スコア(独自算出の注目度): 19.74776726500979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting a single agent to a new multi-agent system brings challenges, necessitating adjustments across various tasks, environments, and interactions with unknown teammates and opponents. Addressing this challenge is highly complex, and researchers have proposed two simplified scenarios, Multi-agent reinforcement learning for zero-shot learning and Ad-Hoc Teamwork. Building on these foundations, we propose a more comprehensive setting, Agent Collaborative-Competitive Adaptation (ACCA), which evaluates an agent to generalize across diverse scenarios, tasks, and interactions with both unfamiliar opponents and teammates. In ACCA, agents adjust to task and environmental changes, collaborate with unseen teammates, and compete against unknown opponents. We introduce a new modeling approach, Multi-Retrieval and Dynamic Generation (MRDG), that effectively models both teammates and opponents using their behavioral trajectories. This method incorporates a positional encoder for varying team sizes and a hypernetwork module to boost agents' learning and adaptive capabilities. Additionally, a viewpoint alignment module harmonizes the observational perspectives of retrieved teammates and opponents with the learning agent. Extensive tests in benchmark scenarios like SMAC, Overcooked-AI, and Melting Pot show that MRDG significantly improves robust collaboration and competition with unseen teammates and opponents, surpassing established baselines. Our code is available at: https://github.com/vcis-wangchenxu/MRDG.git
- Abstract(参考訳): ひとつのエージェントを新しいマルチエージェントシステムに適用することは、課題をもたらし、さまざまなタスク、環境、未知のチームメイトや相手とのインタラクションを調整する必要がある。
この課題への対処は非常に複雑で、研究者たちは、ゼロショット学習のためのマルチエージェント強化学習とアドホックチームワークという、2つのシンプルなシナリオを提案している。
これらの基礎に基づいて,より包括的なエージェント協調型適応 (ACCA) を提案し,多様なシナリオ,タスク,および不慣れな相手とチームメイトとのインタラクションを一般化するエージェントを評価する。
ACCAでは、エージェントはタスクや環境の変化を調整し、目に見えないチームメイトと協力し、未知の相手と競う。
我々は,チームメイトと対戦相手の行動軌跡を効果的にモデル化する新しいモデリング手法,Multi-Retrieval and Dynamic Generation(MRDG)を導入する。
本手法は,様々なチームサイズに対応する位置エンコーダと,エージェントの学習能力と適応能力を高めるハイパーネットワークモジュールを備える。
さらに、視点アライメントモジュールは、検索したチームメイトや相手の観察視点を学習エージェントと調和させる。
SMAC、Overcooked-AI、Melt Potといったベンチマークシナリオの広範なテストは、MDDGが堅牢なコラボレーションと、目に見えないチームメイトや対戦相手との競争を大幅に改善し、確立されたベースラインを超えたことを示している。
私たちのコードは、https://github.com/vcis-wangchenxu/MRDG.gitで利用可能です。
関連論文リスト
- N-Agent Ad Hoc Teamwork [36.10108537776956]
協調的マルチエージェント行動の学習への現在のアプローチは、比較的限定的な設定を前提としている。
本稿では,この問題を定式化し,エージェントモデリングを用いたポリシー最適化(POAM)アルゴリズムを提案する。
POAMは、NAHT問題に対するポリシーグラデーションであり、マルチエージェント強化学習アプローチであり、多様なチームメイト行動への適応を可能にする。
論文 参考訳(メタデータ) (2024-04-16T17:13:08Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In
the Game of Hanabi [15.917861586043813]
現状のZSCアルゴリズムは、異なる学習手法で訓練されたエージェントとペアリングした場合、性能が劣っていることを示す。
我々は,MARL手法の適応性を評価するために,ハナビと呼ばれる人気のある協調型マルチエージェントゲームに基づくフレームワークを構築した。
論文 参考訳(メタデータ) (2023-08-20T14:44:50Z) - Conditional Imitation Learning for Multi-Agent Games [89.897635970366]
本研究では,条件付きマルチエージェント模倣学習の課題について考察する。
本稿では,スケーラビリティとデータ不足の難しさに対処する新しい手法を提案する。
我々のモデルは,egoやパートナエージェント戦略よりも低ランクなサブスペースを学習し,サブスペースに補間することで,新たなパートナ戦略を推論し,適応する。
論文 参考訳(メタデータ) (2022-01-05T04:40:13Z) - Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning [11.480994804659908]
我々は、さまざまなチーム構成の下でエージェントモデルと共同アクション値モデルを学ぶために、グラフニューラルネットワーク上に構築する。
私たちは、我々のアプローチが、他のエージェントが学習者に与える影響をうまくモデル化し、動的なチーム構成にしっかりと適応するポリシーを導いたことを実証的に実証します。
論文 参考訳(メタデータ) (2020-06-18T10:39:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。