Revolutionizing Validation and Verification: Explainable Testing Methodologies for Intelligent Automotive Decision-Making Systems
- URL: http://arxiv.org/abs/2506.16876v1
- Date: Fri, 20 Jun 2025 09:55:56 GMT
- Title: Revolutionizing Validation and Verification: Explainable Testing Methodologies for Intelligent Automotive Decision-Making Systems
- Authors: Halit Eris, Stefan Wagner,
- Abstract summary: This vision paper presents a methodology that integrates explainability, transparency, and interpretability into validation and verification processes.<n>We propose refining V&V requirements through literature reviews and stakeholder input, generating explainable test scenarios via large language models (LLMs), and enabling real-time validation in simulation environments.<n>Our goal is to streamline V&V, reduce resources, and build user trust in autonomous technologies.
- Score: 2.7143159361691227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Driving Systems (ADS) use complex decision-making (DM) models with multimodal sensory inputs, making rigorous validation and verification (V&V) essential for safety and reliability. These models pose challenges in diagnosing failures, tracing anomalies, and maintaining transparency, with current manual testing methods being inefficient and labor-intensive. This vision paper presents a methodology that integrates explainability, transparency, and interpretability into V&V processes. We propose refining V&V requirements through literature reviews and stakeholder input, generating explainable test scenarios via large language models (LLMs), and enabling real-time validation in simulation environments. Our framework includes test oracle, explanation generation, and a test chatbot, with empirical studies planned to evaluate improvements in diagnostic efficiency and transparency. Our goal is to streamline V&V, reduce resources, and build user trust in autonomous technologies.
Related papers
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models [8.912091484067508]
We introduce SV-LLM, a novel multi-agent assistant system designed to automate and enhance system-on-chip (SoC) security verification.<n>By integrating specialized agents for tasks like verification question answering, security asset identification, threat modeling, test plan and property generation, vulnerability detection, and simulation-based bug validation, SV-LLM streamlines the workflow.<n>The system aims to reduce manual intervention, improve accuracy, and accelerate security analysis, supporting proactive identification and mitigation of risks early in the design cycle.
arXiv Detail & Related papers (2025-06-25T13:31:13Z) - FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models [79.41859481668618]
Large Language Models (LLMs) have significantly advanced the fact-checking studies.<n>Existing automated fact-checking evaluation methods rely on static datasets and classification metrics.<n>We introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities.
arXiv Detail & Related papers (2025-02-25T07:44:22Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
We investigate a critical vulnerability in Large Language Models (LLMs)<n>This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.<n>We propose an efficient tree-based search methodology to automatically generate CDV examples.
arXiv Detail & Related papers (2025-02-03T18:43:36Z) - Benchmarking Vision Foundation Models for Input Monitoring in Autonomous Driving [7.064497253920508]
Vision Foundation Models (VFMs) as feature extractors and density modeling techniques are proposed.<n>A comparison with state-of-the-art binary OOD classification methods reveals that VFM embeddings with density estimation outperform existing approaches in identifying OOD inputs.<n>Our method detects high-risk inputs likely to cause errors in downstream tasks, thereby improving overall performance.
arXiv Detail & Related papers (2025-01-14T12:51:34Z) - Are VLMs Ready for Autonomous Driving? An Empirical Study from the Reliability, Data, and Metric Perspectives [56.528835143531694]
We introduce DriveBench, a benchmark dataset designed to evaluate Vision-Language Models (VLMs)<n>Our findings reveal that VLMs often generate plausible responses derived from general knowledge or textual cues rather than true visual grounding.<n>We propose refined evaluation metrics that prioritize robust visual grounding and multi-modal understanding.
arXiv Detail & Related papers (2025-01-07T18:59:55Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
"Black box" characteristic of AI models constrains interpretability, transparency, and reliability.<n>This study presents a unified XAI evaluation framework to evaluate correctness, interpretability, robustness, fairness, and completeness of explanations generated by AI models.
arXiv Detail & Related papers (2024-12-05T05:30:10Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - LADEV: A Language-Driven Testing and Evaluation Platform for Vision-Language-Action Models in Robotic Manipulation [7.8735930411335895]
Vision-Language-Action (VLA) models are an integrated solution for robotic manipulation tasks.
The data-driven nature of VLA models, combined with their lack of interpretability, makes the assurance of their effectiveness and robustness a challenging task.
We propose LADEV, a comprehensive and efficient platform specifically designed for evaluating VLA models.
arXiv Detail & Related papers (2024-10-07T16:49:16Z) - Autonomous Robotic Swarms: A Corroborative Approach for Verification and Validation [0.9937570340630559]
We propose a corroborative approach for formally verifying and validating autonomous robotic swarms.<n>Our work combines formal verification with simulations and experimental validation using real robots.
arXiv Detail & Related papers (2024-07-22T08:40:05Z) - Zero-Knowledge Proof-based Verifiable Decentralized Machine Learning in Communication Network: A Comprehensive Survey [31.111210313340454]
Decentralized approaches to machine learning introduce challenges related to trust and verifiability.<n>We present a comprehensive review of Zero-Knowledge Proof-based Verifiable Machine Learning (ZKP-VML)
arXiv Detail & Related papers (2023-10-23T12:15:23Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Testing Deep Learning Models: A First Comparative Study of Multiple
Testing Techniques [15.695048480513536]
Vision-based systems (VBS) are used in autonomous driving, robotic surgery, critical infrastructure surveillance, air and maritime traffic control, etc.
Deep Learning (DL) has revolutionized the capabilities of vision-based systems (VBS) in critical applications such as autonomous driving, robotic surgery, critical infrastructure surveillance, air and maritime traffic control, etc.
arXiv Detail & Related papers (2022-02-24T15:05:19Z) - Technical Language Supervision for Intelligent Fault Diagnosis in
Process Industry [1.8574771508622119]
In the process industry, condition monitoring systems with automated fault diagnosis methods assisthuman experts and thereby improve maintenance efficiency, process sustainability, and workplace safety.
A major challenge in intelligent fault diagnosis (IFD) is to develop realistic datasets withaccurate labels needed to train and validate models.
domain-specific knowledge about fault characteristics and severitiesexists as technical language annotations in industrial datasets.
This creates a timely opportunity to developtechnical language supervision(TLS) solutions for IFD systems grounded in industrial data.
arXiv Detail & Related papers (2021-12-11T18:59:40Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.