論文の概要: Towards Effective Complementary Security Analysis using Large Language Models
- arxiv url: http://arxiv.org/abs/2506.16899v1
- Date: Fri, 20 Jun 2025 10:46:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.414865
- Title: Towards Effective Complementary Security Analysis using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた効果的な補完的セキュリティ分析に向けて
- Authors: Jonas Wagner, Simon Müller, Christian Näther, Jan-Philipp Steghöfer, Andreas Both,
- Abstract要約: セキュリティ分析における重要な課題は、静的アプリケーションセキュリティテスト(SAST)ツールによって生成される潜在的なセキュリティの弱点を手動で評価することである。
本研究では,SAST 結果の評価を改善するために,Large Language Models (LLMs) を提案する。
- 参考スコア(独自算出の注目度): 3.203446435054805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A key challenge in security analysis is the manual evaluation of potential security weaknesses generated by static application security testing (SAST) tools. Numerous false positives (FPs) in these reports reduce the effectiveness of security analysis. We propose using Large Language Models (LLMs) to improve the assessment of SAST findings. We investigate the ability of LLMs to reduce FPs while trying to maintain a perfect true positive rate, using datasets extracted from the OWASP Benchmark (v1.2) and a real-world software project. Our results indicate that advanced prompting techniques, such as Chain-of-Thought and Self-Consistency, substantially improve FP detection. Notably, some LLMs identified approximately 62.5% of FPs in the OWASP Benchmark dataset without missing genuine weaknesses. Combining detections from different LLMs would increase this FP detection to approximately 78.9%. Additionally, we demonstrate our approach's generalizability using a real-world dataset covering five SAST tools, three programming languages, and infrastructure files. The best LLM detected 33.85% of all FPs without missing genuine weaknesses, while combining detections from different LLMs would increase this detection to 38.46%. Our findings highlight the potential of LLMs to complement traditional SAST tools, enhancing automation and reducing resources spent addressing false alarms.
- Abstract(参考訳): セキュリティ分析における重要な課題は、静的アプリケーションセキュリティテスト(SAST)ツールによって生成される潜在的なセキュリティの弱点を手動で評価することである。
これらの報告における多くの偽陽性(FPs)は、セキュリティ分析の有効性を低下させる。
本研究では,SAST 結果の評価を改善するために,Large Language Models (LLMs) を提案する。
OWASP Benchmark (v1.2) と実世界のソフトウェアプロジェクトから抽出したデータセットを用いて, 完全正の正の確率を維持しつつ, LLM の FP 削減能力について検討する。
以上の結果から,Chain-of-ThoughtやSelf-Consistencyといった高度なプロンプト技術によってFPの検出が大幅に向上することが示唆された。
特に、一部のLLMはOWASPベンチマークデータセットのFPの62.5%を真の弱点を欠くことなく特定した。
異なるLLMからの検知を組み合わせれば、このFP検出は78.9%に増加する。
さらに,5つのSASTツール,3つのプログラミング言語,インフラストラクチャファイルを含む実世界のデータセットを用いて,このアプローチの一般化可能性を示す。
最高のLLMは真の弱点を欠くことなく全FPの33.85%を検知し、異なるLLMからの検知を組み合わせれば38.46%に上昇した。
この結果から,従来のSASTツールを補完するLLMの可能性,自動化の強化,誤報に対処するリソースの削減が示唆された。
関連論文リスト
- CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection [2.5228276786940182]
本稿では,異なる手法の脆弱性検出能力を評価するためのベンチマークフレームワークであるCASTLEを紹介する。
我々は,25個のCWEをカバーする250個のマイクロベンチマークプログラムを手作りしたデータセットを用いて,静的解析ツール13,LLM10,形式検証ツール2を評価した。
論文 参考訳(メタデータ) (2025-03-12T14:30:05Z) - Large Language Models for In-File Vulnerability Localization Can Be "Lost in the End" [6.6389862916575275]
新しい開発手法では、研究者はLLMが大規模なファイルサイズの入力を効果的に分析できるかどうかを調べる必要がある。
本稿では,GPTモデルを含む,最先端のチャットベースのLLMがファイル内脆弱性の検出に有効であることを示す。
論文 参考訳(メタデータ) (2025-02-09T14:51:15Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Benchは、安全でないユーザ要求を認識し拒否する大規模言語モデル(LLM)能力を評価するためのベンチマークである。
まず、既存の手法では、安全でないトピックの粗い分類を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。