Abelian multi-cycle codes for single-shot error correction
- URL: http://arxiv.org/abs/2506.16910v1
- Date: Fri, 20 Jun 2025 11:05:32 GMT
- Title: Abelian multi-cycle codes for single-shot error correction
- Authors: Hsiang-Ku Lin, Pak Kau Lim, Alexey A. Kovalev, Leonid P. Pryadko,
- Abstract summary: We construct a family of quantum low-density parity-check codes locally equivalent to higher-dimensional quantum hypergraph-product (QHP) codes.<n>The proposed codes have highly redundant sets of low-weight stabilizer generators, which improves decoding accuracy in a fault-tolerant regime.<n>We derive simple expressions for the dimension of the proposed codes in two important special cases, give bounds on the distances, and explicitly construct some relatively short codes.
- Score: 0.027042267806481293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct a family of quantum low-density parity-check codes locally equivalent to higher-dimensional quantum hypergraph-product (QHP) codes. Similarly to QHP codes, the proposed codes have highly redundant sets of low-weight stabilizer generators, which improves decoding accuracy in a fault-tolerant regime and gives them single-shot properties. The advantage of the new construction is that it gives shorter codes. We derive simple expressions for the dimension of the proposed codes in two important special cases, give bounds on the distances, and explicitly construct some relatively short codes. Circuit simulations for codes locally equivalent to 4-dimensional toric codes show a (pseudo)threshold close to 1.1%, better than for toric or surface codes with a similar noise model.
Related papers
- Romanesco codes: Bias-tailored qLDPC codes from fractal codes [0.0]
We introduce and analyze a family of Clifford-deformed bicycle codes that are tailored for biased noise.<n>Our qLDPC codes are defined on a bipartite hexagonal lattice with limited-range gates and low-weight stabilizers.<n>We find small examples with high encoding rate that perform well for a large range of bias.
arXiv Detail & Related papers (2025-05-30T18:06:24Z) - Hierarchical Quantum Error Correction with Hypergraph Product Code and Rotated Surface Code [0.9002260638342727]
We propose and analyze a hierarchical quantum error correction (QEC) scheme that encodes hypergraph product (HGP) codes with rotated surface codes.<n>The upper layer employs (3,4)-random HGP codes, known for their constant error rate.<n>The lower layer consists of a rotated surface code with distance 5, allowing hardware compatibility through lattice surgery.
arXiv Detail & Related papers (2025-05-24T08:39:39Z) - Existence and Characterisation of Bivariate Bicycle Codes [0.0]
We show that BB codes provide compact quantum memory with low overhead and enhanced error correcting capabilities.<n>We explore these codes by leveraging their ring structure and predict their dimension as well as conditions on their existence.
arXiv Detail & Related papers (2025-02-24T11:04:15Z) - Threshold Selection for Iterative Decoding of $(v,w)$-regular Binary Codes [84.0257274213152]
Iterative bit flipping decoders are an efficient choice for sparse $(v,w)$-regular codes.<n>We propose concrete criteria for threshold determination, backed by a closed form model.
arXiv Detail & Related papers (2025-01-23T17:38:22Z) - List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - High-threshold, low-overhead and single-shot decodable fault-tolerant quantum memory [0.6144680854063939]
We present a new family of quantum low-density parity-check codes, which we call radial codes.
In simulations of circuit-level noise, we observe comparable error suppression to surface codes of similar distance.
Their error correction capabilities, tunable parameters and small size make them promising candidates for implementation on near-term quantum devices.
arXiv Detail & Related papers (2024-06-20T16:08:06Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Lift-Connected Surface Codes [1.4767596539913115]
We use the recently introduced lifted product to construct a family of Quantum Low Density Parity Check Codes (QLDPC codes)
The codes we obtain can be viewed as stacks of surface codes that are interconnected, leading to the name lift-connected surface (LCS) codes.
For example, already at moderate numbers of physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or similarly, require fewer qubits for a fixed target logical error rate.
arXiv Detail & Related papers (2024-01-05T17:22:49Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.