Lift-Connected Surface Codes
- URL: http://arxiv.org/abs/2401.02911v2
- Date: Thu, 29 Aug 2024 12:06:31 GMT
- Title: Lift-Connected Surface Codes
- Authors: Josias Old, Manuel Rispler, Markus Müller,
- Abstract summary: We use the recently introduced lifted product to construct a family of Quantum Low Density Parity Check Codes (QLDPC codes)
The codes we obtain can be viewed as stacks of surface codes that are interconnected, leading to the name lift-connected surface (LCS) codes.
For example, already at moderate numbers of physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or similarly, require fewer qubits for a fixed target logical error rate.
- Score: 1.4767596539913115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use the recently introduced lifted product to construct a family of Quantum Low Density Parity Check Codes (QLDPC codes). The codes we obtain can be viewed as stacks of surface codes that are interconnected, leading to the name lift-connected surface (LCS) codes. LCS codes offer a wide range of parameters - a particularly striking feature is that they show interesting properties that are favorable compared to the standard surface code. For example, already at moderate numbers of physical qubits in the order of tens, LCS codes of equal size have lower logical error rate or similarly, require fewer qubits for a fixed target logical error rate. We present and analyze the construction and provide numerical simulation results for the logical error rate under code capacity and phenomenological noise. These results show that LCS codes attain thresholds that are comparable to corresponding (non-connected) copies of surface codes, while the logical error rate can be orders of magnitude lower, even for representatives with the same parameters. This provides a code family showing the potential of modern product constructions at already small qubit numbers. Their amenability to 3D-local connectivity renders them particularly relevant for near-term implementations.
Related papers
- List Decodable Quantum LDPC Codes [49.2205789216734]
We give a construction of Quantum Low-Density Parity Check (QLDPC) codes with near-optimal rate-distance tradeoff.
We get efficiently list decodable QLDPC codes with unique decoders.
arXiv Detail & Related papers (2024-11-06T23:08:55Z) - Wire Codes [0.0]
We introduce a recipe to transform any quantum stabilizer code into a subsystem code with related code parameters that has weight and degree three.
We call the subsystem codes produced by our recipe "wire codes"
Our results constitute a general method to construct low-overhead subsystem codes on general graphs.
arXiv Detail & Related papers (2024-10-14T06:27:09Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Long-range-enhanced surface codes [0.0]
The surface code is a quantum error-correcting code for one logical qubit, protected by spatially localized parity checks in two dimensions.
We show that storing more logical qubits requires either sacrificing the robustness of the surface code against errors or increasing the number of physical qubits.
Long-range-enhanced surface codes outperform conventional surface codes using hundreds of physical qubits, and represent a practical strategy to enhance the robustness of logical qubits to errors in near-term devices.
arXiv Detail & Related papers (2023-09-21T01:39:31Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Trapping Sets of Quantum LDPC Codes [9.482750811734565]
We identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used.
We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders.
arXiv Detail & Related papers (2020-12-30T19:35:17Z) - Decoding Across the Quantum LDPC Code Landscape [4.358626952482686]
We show that belief propagation combined with ordered statistics post-processing is a general decoder for quantum low density parity check codes.
We run numerical simulations of the decoder applied to three families of hypergraph product code: topological codes, fixed-rate random codes and a new class of codes that we call semi-topological codes.
arXiv Detail & Related papers (2020-05-14T14:33:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.