論文の概要: A Neural Operator based Hybrid Microscale Model for Multiscale Simulation of Rate-Dependent Materials
- arxiv url: http://arxiv.org/abs/2506.16918v1
- Date: Fri, 20 Jun 2025 11:25:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.425614
- Title: A Neural Operator based Hybrid Microscale Model for Multiscale Simulation of Rate-Dependent Materials
- Title(参考訳): ニューラル演算子を用いたハイブリッドマイクロスケールモデルによる速度依存材料のマルチスケールシミュレーション
- Authors: Dhananjeyan Jeyaraj, Hamidreza Eivazi, Jendrik-Alexander Tröger, Stefan Wittek, Stefan Hartmann, Andreas Rausch,
- Abstract要約: 我々は、マイクロスケール物理を予測するために神経演算子を使用し、データ駆動と物理に基づくアプローチを組み合わせたハイブリッドモデルを生み出した。
粘弾性状態を含む時間依存固体力学問題に対して, この手法を適用した。
- 参考スコア(独自算出の注目度): 0.7946947383637114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The behavior of materials is influenced by a wide range of phenomena occurring across various time and length scales. To better understand the impact of microstructure on macroscopic response, multiscale modeling strategies are essential. Numerical methods, such as the $\text{FE}^2$ approach, account for micro-macro interactions to predict the global response in a concurrent manner. However, these methods are computationally intensive due to the repeated evaluations of the microscale. This challenge has led to the integration of deep learning techniques into computational homogenization frameworks to accelerate multiscale simulations. In this work, we employ neural operators to predict the microscale physics, resulting in a hybrid model that combines data-driven and physics-based approaches. This allows for physics-guided learning and provides flexibility for different materials and spatial discretizations. We apply this method to time-dependent solid mechanics problems involving viscoelastic material behavior, where the state is represented by internal variables only at the microscale. The constitutive relations of the microscale are incorporated into the model architecture and the internal variables are computed based on established physical principles. The results for homogenized stresses ($<6\%$ error) show that the approach is computationally efficient ($\sim 100 \times$ faster).
- Abstract(参考訳): 材料の挙動は、様々な時間と長さのスケールで起こる幅広い現象の影響を受けている。
ミクロ構造がマクロ応答に与える影響をよりよく理解するためには、マルチスケールモデリング戦略が不可欠である。
$\text{FE}^2$ のような数値的手法は、グローバル応答を同時に予測するためのマイクロマクロ相互作用を考慮に入れている。
しかし,これらの手法はマイクロスケールの繰り返し評価により計算集約的である。
この課題は、マルチスケールシミュレーションを高速化するために、ディープラーニング技術を計算均質化フレームワークに統合することにつながった。
本研究では,マイクロスケール物理の予測にニューラル演算子を用い,データ駆動と物理に基づくアプローチを組み合わせたハイブリッドモデルを構築した。
これは物理誘導学習を可能にし、異なる材料や空間的離散化に柔軟性を提供する。
本研究では, 粘弾性材料挙動を含む時間依存固体力学問題に適用し, 状態はマイクロスケールでのみ内部変数で表される。
マイクロスケールの構成的関係はモデルアーキテクチャに組み込まれ、内部変数は確立された物理原理に基づいて計算される。
ホモジェナイズドストレス(<6\%$ error)の結果は、アプローチが計算的に効率的であることを示している(\sim 100 \times$ faster)。
関連論文リスト
- Latent Representation Learning of Multi-scale Thermophysics: Application to Dynamics in Shocked Porous Energetic Material [0.05057680722486273]
本稿では,自然言語処理におけるトークン化の考え方を動機としたメタラーニング手法を提案する。
メソスケールの学習過程を加速するために,マイクロスケール物理の表現の縮小を学習できることが示される。
提案手法は,小規模なメソスケールデータセット上での安価なマイクロスケールシミュレーションと高速トレーニングを活用することで,クロージャモデルの開発を加速する。
論文 参考訳(メタデータ) (2025-06-15T23:28:33Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSimは、ガウスカーネルを通して表現される現実の弾性物体の動的挙動をキャプチャするために設計された、ニューラルネットワークベースの新しいシミュレータである。
我々は連続体力学を活用し、各カーネルを連続体を表すCenter of Mass System (CMS)として扱う。
さらに、ガウスシムは質量や運動量保存のような明示的な物理制約を取り入れ、解釈可能な結果と堅牢で物理的に妥当なシミュレーションを確実にする。
論文 参考訳(メタデータ) (2024-12-23T18:58:17Z) - Enhancing Multiscale Simulations with Constitutive Relations-Aware Deep Operator Networks [0.7946947383637114]
マルチスケール有限要素計算は、マイクロ構造特性をマクロ計算解析に組み込む能力に期待されている。
マイクロスケール物理の代理モデリングにディープ・オペレーター・ネットワークを利用するハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T15:40:05Z) - A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
本稿では,この問題のマルチスケール性を維持するための代替的な代理モデル戦略を提案する。
我々は, 顕微鏡材料モデルを維持しながら, グラフニューラルネットワーク(GNN)を用いて, フルフィールドの顕微鏡歪みを予測した。
本研究では,サロゲートが複雑なマクロな応力-ひずみ経路を予測可能であることを示す。
論文 参考訳(メタデータ) (2024-02-20T15:54:24Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
古典法則(モデルベース)、データ駆動補正コンポーネント、計算的マルチスケールアプローチを組み合わせたハイブリッド方法論が提示される。
非線形数値均質化法により得られた低スケールのデータを用いてモデルベース材料表現を局所的に改善する。
提案手法では,モデルとデータの両方が基本的な役割を担い,物理に基づく応答と機械学習のブラックボックスの相乗的統合を実現する。
論文 参考訳(メタデータ) (2021-04-06T16:34:46Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
転送学習は,低忠実度シミュレーションデータとシミュレーションデータの両方を利用することができることを示す。
我々は、大きな変形を受ける異種材料のオープンソースベンチマークデータセットであるMechanical MNISTを拡張した。
これらの低忠実度シミュレーション結果に基づいて学習したメタモデルに蓄積された知識の伝達は、高忠実度シミュレーションの結果を予測するのに使用されるメタモデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2020-10-28T12:43:46Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。