論文の概要: Enhancing Multiscale Simulations with Constitutive Relations-Aware Deep Operator Networks
- arxiv url: http://arxiv.org/abs/2405.13759v1
- Date: Wed, 22 May 2024 15:40:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:25:17.867588
- Title: Enhancing Multiscale Simulations with Constitutive Relations-Aware Deep Operator Networks
- Title(参考訳): 構成関係を考慮したマルチスケールシミュレーションの実現 : 深層演算子ネットワーク
- Authors: Hamidreza Eivazi, Mahyar Alikhani, Jendrik-Alexander Tröger, Stefan Wittek, Stefan Hartmann, Andreas Rausch,
- Abstract要約: マルチスケール有限要素計算は、マイクロ構造特性をマクロ計算解析に組み込む能力に期待されている。
マイクロスケール物理の代理モデリングにディープ・オペレーター・ネットワークを利用するハイブリッド手法を提案する。
- 参考スコア(独自算出の注目度): 0.7946947383637114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiscale problems are widely observed across diverse domains in physics and engineering. Translating these problems into numerical simulations and solving them using numerical schemes, e.g. the finite element method, is costly due to the demand of solving initial boundary-value problems at multiple scales. On the other hand, multiscale finite element computations are commended for their ability to integrate micro-structural properties into macroscopic computational analyses using homogenization techniques. Recently, neural operator-based surrogate models have shown trustworthy performance for solving a wide range of partial differential equations. In this work, we propose a hybrid method in which we utilize deep operator networks for surrogate modeling of the microscale physics. This allows us to embed the constitutive relations of the microscale into the model architecture and to predict microscale strains and stresses based on the prescribed macroscale strain inputs. Furthermore, numerical homogenization is carried out to obtain the macroscale quantities of interest. We apply the proposed approach to quasi-static problems of solid mechanics. The results demonstrate that our constitutive relations-aware DeepONet can yield accurate solutions even when being confronted with a restricted dataset during model development.
- Abstract(参考訳): マルチスケール問題は、物理学と工学の様々な領域で広く観察されている。
これらの問題を数値シミュレーションに翻訳し、数値的なスキームを用いて解くことは、例えば有限要素法は、初期境界値問題を複数のスケールで解くためにコストがかかる。
一方, マルチスケール有限要素計算は, 均質化法を用いて微構造特性をマクロ計算解析に組み込む能力に期待できる。
近年、ニューラル演算子に基づく代理モデルは、幅広い偏微分方程式を解く上で、信頼できる性能を示している。
本研究では,マイクロスケール物理のサロゲートモデリングにディープ・オペレーター・ネットワークを利用するハイブリッド手法を提案する。
これにより、マイクロスケールの構成的関係をモデルアーキテクチャに組み込むことができ、所定のマクロスケールのひずみ入力に基づいて、マイクロスケールのひずみと応力を予測することができる。
さらに、数値的均質化を行い、そのマクロな量の興味を得る。
提案手法を固体力学の準静的問題に適用する。
その結果、モデル開発中に制限されたデータセットに直面する場合であっても、私たちの構成的関係を意識したDeepONetは正確な解が得られることが示された。
関連論文リスト
- A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
本稿では,この問題のマルチスケール性を維持するための代替的な代理モデル戦略を提案する。
我々は, 顕微鏡材料モデルを維持しながら, グラフニューラルネットワーク(GNN)を用いて, フルフィールドの顕微鏡歪みを予測した。
本研究では,サロゲートが複雑なマクロな応力-ひずみ経路を予測可能であることを示す。
論文 参考訳(メタデータ) (2024-02-20T15:54:24Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - DeepPhysics: a physics aware deep learning framework for real-time
simulation [0.0]
データ駆動手法を用いて超弾性材料をシミュレートする手法を提案する。
ニューラルネットワークは、境界条件と結果の変位場との間の非線形関係を学習するために訓練される。
その結果, 限られたデータ量でトレーニングしたネットワークアーキテクチャは, 1ミリ秒未満で変位場を予測できることがわかった。
論文 参考訳(メタデータ) (2021-09-17T12:15:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
古典法則(モデルベース)、データ駆動補正コンポーネント、計算的マルチスケールアプローチを組み合わせたハイブリッド方法論が提示される。
非線形数値均質化法により得られた低スケールのデータを用いてモデルベース材料表現を局所的に改善する。
提案手法では,モデルとデータの両方が基本的な役割を担い,物理に基づく応答と機械学習のブラックボックスの相乗的統合を実現する。
論文 参考訳(メタデータ) (2021-04-06T16:34:46Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。