論文の概要: Machine learning of hidden variables in multiscale fluid simulation
- arxiv url: http://arxiv.org/abs/2306.10709v1
- Date: Mon, 19 Jun 2023 06:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-21 19:06:28.118791
- Title: Machine learning of hidden variables in multiscale fluid simulation
- Title(参考訳): マルチスケール流体シミュレーションにおける隠れ変数の機械学習
- Authors: Archis S. Joglekar and Alexander G. R. Thomas
- Abstract要約: 流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving fluid dynamics equations often requires the use of closure relations
that account for missing microphysics. For example, when solving equations
related to fluid dynamics for systems with a large Reynolds number, sub-grid
effects become important and a turbulence closure is required, and in systems
with a large Knudsen number, kinetic effects become important and a kinetic
closure is required. By adding an equation governing the growth and transport
of the quantity requiring the closure relation, it becomes possible to capture
microphysics through the introduction of ``hidden variables'' that are
non-local in space and time. The behavior of the ``hidden variables'' in
response to the fluid conditions can be learned from a higher fidelity or
ab-initio model that contains all the microphysics. In our study, a partial
differential equation simulator that is end-to-end differentiable is used to
train judiciously placed neural networks against ground-truth simulations. We
show that this method enables an Euler equation based approach to reproduce
non-linear, large Knudsen number plasma physics that can otherwise only be
modeled using Boltzmann-like equation simulators such as Vlasov or
Particle-In-Cell modeling.
- Abstract(参考訳): 流体力学の方程式を解くには、マイクロフィジカルの欠如を考慮した閉包関係の使用がしばしば必要となる。
例えば、レイノルズ数が大きい系の流体力学に関する方程式を解くと、サブグリッド効果が重要となり、乱流閉包が必要となり、クヌーゼン数が大きい系では、運動効果が重要となり、動力学的閉包が必要となる。
閉包関係を必要とする量の成長と輸送を規定する方程式を加えることで、空間や時間において非局所的な「隠れ変数」を導入することで、微小物理学を捉えることができる。
流体条件に対する「隠れた変数」の振る舞いは、全ての微小物理学を含む高い忠実度またはab-initioモデルから学べる。
本研究では,エンド・ツー・エンドの微分可能である偏微分方程式シミュレータを用いて,実地シミュレーションに対する疑似配置ニューラルネットワークのトレーニングを行う。
この手法により, ボルツマン型方程式シミュレータ(Vlasov や Particle-In-Cell など)でのみモデル化できる非線形で大規模なクヌーゼン数プラズマ物理学を再現できることを示す。
関連論文リスト
- Potential quantum advantage for simulation of fluid dynamics [1.4046104514367475]
我々は,量子コンピューティングを用いて乱流を制御したナビエ・ストークス方程式をシミュレートするために,潜在的な量子指数的高速化を実現することができることを示す。
この研究は、非線形多スケール輸送現象をシミュレートする指数的な量子優位性が存在することを示唆している。
論文 参考訳(メタデータ) (2023-03-29T09:14:55Z) - Data-driven modeling of Landau damping by physics-informed neural
networks [4.728411962159049]
機械学習を用いて,ニューラルネットワークに含まれる暗黙の流体閉鎖を伴う多モーメント流体モデルを構築した。
このモデルは、減衰速度を含む電場エネルギーの時間発展と、動力学シミュレーションからプラズマ力学を再現する。
この研究は、複雑なマルチスケール実験室、宇宙、天体物理学の問題にまで拡張可能な、大規模システムの正確かつ効率的なモデリングに光を当てている。
論文 参考訳(メタデータ) (2022-11-02T10:33:38Z) - Data-driven, multi-moment fluid modeling of Landau damping [6.456946924438425]
プラズマ系の流体偏微分方程式(PDE)を学習するために,ディープラーニングアーキテクチャを適用した。
学習した多モーメント流体PDEはランダウ減衰などの運動効果を取り入れることを示した。
論文 参考訳(メタデータ) (2022-09-10T19:06:12Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Deep Random Vortex Method for Simulation and Inference of Navier-Stokes
Equations [69.5454078868963]
ナビエ・ストークス方程式(Navier-Stokes equation)は、液体や空気などの流体の運動を記述する重要な偏微分方程式である。
AI技術の発展に伴い、非圧縮性ナビエ・ストークス方程式によって支配される流体力学をシミュレーションし、推論するために、ディープニューラルネットワークを統合するためにいくつかのアプローチが設計された。
本研究では,ニューラルネットワークとNavier-Stokes方程式に相当するランダム渦力学系を組み合わせたemphDeep Random Vortex Method (DRVM)を提案する。
論文 参考訳(メタデータ) (2022-06-20T04:58:09Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。