論文の概要: A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
- arxiv url: http://arxiv.org/abs/2506.16929v1
- Date: Fri, 20 Jun 2025 11:44:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.429506
- Title: A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
- Title(参考訳): サンパウロにおける深層学習と機械学習による新生児死亡予測
- Authors: Mohon Raihan, Plabon Kumar Saha, Rajan Das Gupta, A Z M Tahmidul Kabir, Afia Anjum Tamanna, Md. Harun-Ur-Rashid, Adnan Bin Abdus Salam, Md Tanvir Anjum, A Z M Ahteshamul Kabir,
- Abstract要約: 新生児死亡は、未発達の国や一部の先進国にとって、いまだに深刻な現実である。
この数を減少させるためには、絶滅危惧児の早期予測が不可欠である。
新生児が危険にさらされているかどうかを判断するために、機械学習が使用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neonatal death is still a concerning reality for underdeveloped and even some developed countries. Worldwide data indicate that 26.693 babies out of 1,000 births die, according to Macro Trades. To reduce this number, early prediction of endangered babies is crucial. Such prediction enables the opportunity to take ample care of the child and mother so that early child death can be avoided. In this context, machine learning was used to determine whether a newborn baby is at risk. To train the predictive model, historical data of 1.4 million newborns was used. Machine learning and deep learning techniques such as logical regression, K-nearest neighbor, random forest classifier, extreme gradient boosting (XGBoost), convolutional neural network, and long short-term memory (LSTM) were implemented using the dataset to identify the most accurate model for predicting neonatal mortality. Among the machine learning algorithms, XGBoost and random forest classifier achieved the best accuracy with 94%, while among the deep learning models, LSTM delivered the highest accuracy with 99%. Therefore, using LSTM appears to be the most suitable approach to predict whether precautionary measures for a child are necessary.
- Abstract(参考訳): 新生児死亡は、未発達の国や一部の先進国にとって、いまだに深刻な現実である。
マクロ・トレードスによると、全世界で出生1000件のうち26.693件の赤ちゃんが死亡している。
この数を減少させるためには、絶滅危惧児の早期予測が不可欠である。
このような予測により、子供と母親の十分なケアを受ける機会が得られ、幼児の早期死亡を回避できる。
この文脈では、新生児が危険にさらされているかどうかを判断するために機械学習が使用された。
予測モデルをトレーニングするために、140万人の新生児の歴史的データが使用された。
機械学習と深層学習技術として, 論理回帰, K-nearest 隣人, ランダム森林分類器, 極勾配増強 (XGBoost), 畳み込みニューラルネットワーク, 長期記憶 (LSTM) をデータセットを用いて実装し, 新生児死亡予測の最も正確なモデルを特定した。
機械学習アルゴリズムのうち、XGBoostとランダム森林分類器は94%で最高の精度を達成し、ディープラーニングモデルでは、LSTMが最も高い精度を99%で達成した。
したがって、LSTMは、子どもの予防措置が必要かどうかを予測するのに最も適していると考えられる。
関連論文リスト
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - M-TabNet: A Multi-Encoder Transformer Model for Predicting Neonatal Birth Weight from Multimodal Data [3.452389713639621]
出生体重(BW)は新生児の健康にとって重要な指標であり、低出生体重(LBW)は死亡率と死亡率の増加と関連している。
既存のモデルでは栄養学や遺伝学の影響を無視することが多く、主に生理学やライフスタイルに重点を置いている。
本研究は,12週間の妊娠後早期のBW予測のためのマルチエンコーダアーキテクチャを用いたアテンションベーストランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2025-04-20T00:03:47Z) - Advancing Newborn Care: Precise Birth Time Detection Using AI-Driven Thermal Imaging with Adaptive Normalization [1.101731711817642]
本稿では,人工知能(AI)とサーマルイメージングの融合について検討し,第1次AI駆動型バース検出器の開発について述べる。
まず,ガウス混合モデル(GMM)に基づく適応正規化手法を提案し,温度変動に関する問題を緩和する。
熱フレーム内での新生児の検出において、88.1%の精度と89.3%のリコールが報告されている。
論文 参考訳(メタデータ) (2024-10-14T13:20:51Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
われわれはまず, 3つの不良新生児結果の相関関係を解析し, マルチタスク学習(MTL)問題として複数の新生児結果の診断を定式化する。
特に、MTLフレームワークは、共有された隠れレイヤと複数のタスク固有のブランチを含んでいる。
論文 参考訳(メタデータ) (2023-03-28T00:44:06Z) - Towards early prediction of neurodevelopmental disorders: Computational
model for Face Touch and Self-adaptors in Infants [0.0]
乳児の運動を評価することは、発達障害の発症リスクを理解する鍵となる。
心理学における以前の研究は、赤ちゃんの顔の触覚などの特定の動きやジェスチャーを測定することは、赤ちゃんが自分自身とその文脈をどのように理解しているかを分析するのに不可欠であることを示した。
本研究は,乳幼児の動作やジェスチャーを追跡することによって,映像記録から顔の触覚を検出する,最初の自動アプローチを提案する。
論文 参考訳(メタデータ) (2023-01-07T18:08:43Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep
Learning Model [0.0]
我々は,新生児の皮質表面データを解析するためにディープニューラルネットワークを適用した。
我々の目標は、神経発達のバイオマーカーを特定し、これらのバイオマーカーに基づいて出生時の妊娠年齢を予測することである。
論文 参考訳(メタデータ) (2022-11-16T11:15:23Z) - Scalable Machine Learning Architecture for Neonatal Seizure Detection on
Ultra-Edge Devices [0.0]
本研究では,機械学習(ML)に基づくアーキテクチャを提案する。
本研究で選択した標準MLモデルよりも6%高い87%の感度を達成した。
論文 参考訳(メタデータ) (2021-11-29T12:42:13Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Clinical Risk Prediction with Temporal Probabilistic Asymmetric
Multi-Task Learning [80.66108902283388]
マルチタスク学習手法は、臨床リスク予測などの安全クリティカルな応用に注意を払って使用すべきである。
既存の非対称なマルチタスク学習手法は、低損失のタスクから高損失のタスクへの知識伝達を行うことにより、この負の伝達問題に対処する。
特徴レベルの不確実性に基づいて,特定のタスク/タイムステップから関連する不確実なタスクへの知識伝達を行う,新しい時間的非対称型マルチタスク学習モデルを提案する。
論文 参考訳(メタデータ) (2020-06-23T06:01:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。