A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
- URL: http://arxiv.org/abs/2506.16929v1
- Date: Fri, 20 Jun 2025 11:44:48 GMT
- Title: A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
- Authors: Mohon Raihan, Plabon Kumar Saha, Rajan Das Gupta, A Z M Tahmidul Kabir, Afia Anjum Tamanna, Md. Harun-Ur-Rashid, Adnan Bin Abdus Salam, Md Tanvir Anjum, A Z M Ahteshamul Kabir,
- Abstract summary: Neonatal death is still a concerning reality for underdeveloped and even some developed countries.<n>To reduce this number, early prediction of endangered babies is crucial.<n>Machine learning was used to determine whether a newborn baby is at risk.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neonatal death is still a concerning reality for underdeveloped and even some developed countries. Worldwide data indicate that 26.693 babies out of 1,000 births die, according to Macro Trades. To reduce this number, early prediction of endangered babies is crucial. Such prediction enables the opportunity to take ample care of the child and mother so that early child death can be avoided. In this context, machine learning was used to determine whether a newborn baby is at risk. To train the predictive model, historical data of 1.4 million newborns was used. Machine learning and deep learning techniques such as logical regression, K-nearest neighbor, random forest classifier, extreme gradient boosting (XGBoost), convolutional neural network, and long short-term memory (LSTM) were implemented using the dataset to identify the most accurate model for predicting neonatal mortality. Among the machine learning algorithms, XGBoost and random forest classifier achieved the best accuracy with 94%, while among the deep learning models, LSTM delivered the highest accuracy with 99%. Therefore, using LSTM appears to be the most suitable approach to predict whether precautionary measures for a child are necessary.
Related papers
- Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - M-TabNet: A Multi-Encoder Transformer Model for Predicting Neonatal Birth Weight from Multimodal Data [3.452389713639621]
Birth weight (BW) is a key indicator of neonatal health, with low birth weight (LBW) linked to increased mortality and morbidity.<n>Existing models often neglect nutritional and genetic influences, focusing mainly on physiological and lifestyle factors.<n>This study presents an attention-based transformer model with a multi-encoder architecture for early (less than 12 weeks of gestation) BW prediction.
arXiv Detail & Related papers (2025-04-20T00:03:47Z) - Advancing Newborn Care: Precise Birth Time Detection Using AI-Driven Thermal Imaging with Adaptive Normalization [1.101731711817642]
We investigate the fusion of Artificial Intelligence (AI) and thermal imaging to develop the first AI-driven Time of Birth detector.
Our methodology involves a three-step process: first, we propose an adaptive normalization method based on Gaussian mixture models (GMM) to mitigate issues related to temperature variations.
A precision of 88.1% and a recall of 89.3% are reported in the detection of the newborn within thermal frames during performance evaluation.
arXiv Detail & Related papers (2024-10-14T13:20:51Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Predicting Adverse Neonatal Outcomes for Preterm Neonates with
Multi-Task Learning [51.487856868285995]
We first analyze the correlations between three adverse neonatal outcomes and then formulate the diagnosis of multiple neonatal outcomes as a multi-task learning (MTL) problem.
In particular, the MTL framework contains shared hidden layers and multiple task-specific branches.
arXiv Detail & Related papers (2023-03-28T00:44:06Z) - Towards early prediction of neurodevelopmental disorders: Computational
model for Face Touch and Self-adaptors in Infants [0.0]
evaluating a baby's movements is key to understanding possible risks of developmental disorders in their growth.
Previous research in psychology has shown that measuring specific movements or gestures such as face touches in babies is essential to analyse how babies understand themselves and their context.
This research proposes the first automatic approach that detects face touches from video recordings by tracking infants' movements and gestures.
arXiv Detail & Related papers (2023-01-07T18:08:43Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Neurodevelopmental Phenotype Prediction: A State-of-the-Art Deep
Learning Model [0.0]
We apply a deep neural network to analyse the cortical surface data of neonates.
Our goal is to identify neurodevelopmental biomarkers and to predict gestational age at birth based on these biomarkers.
arXiv Detail & Related papers (2022-11-16T11:15:23Z) - Scalable Machine Learning Architecture for Neonatal Seizure Detection on
Ultra-Edge Devices [0.0]
This research presents a machine learning (ML) based architecture that operates with comparable predictive performance as previous models.
Our architecture achieved a best sensitivity of 87%, which is 6% more than that of the standard ML model chosen in this study.
arXiv Detail & Related papers (2021-11-29T12:42:13Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Clinical Risk Prediction with Temporal Probabilistic Asymmetric
Multi-Task Learning [80.66108902283388]
Multi-task learning methods should be used with caution for safety-critical applications, such as clinical risk prediction.
Existing asymmetric multi-task learning methods tackle this negative transfer problem by performing knowledge transfer from tasks with low loss to tasks with high loss.
We propose a novel temporal asymmetric multi-task learning model that performs knowledge transfer from certain tasks/timesteps to relevant uncertain tasks, based on feature-level uncertainty.
arXiv Detail & Related papers (2020-06-23T06:01:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.