Visual-Instructed Degradation Diffusion for All-in-One Image Restoration
- URL: http://arxiv.org/abs/2506.16960v1
- Date: Fri, 20 Jun 2025 12:50:42 GMT
- Title: Visual-Instructed Degradation Diffusion for All-in-One Image Restoration
- Authors: Wenyang Luo, Haina Qin, Zewen Chen, Libin Wang, Dandan Zheng, Yuming Li, Yufan Liu, Bing Li, Weiming Hu,
- Abstract summary: We propose textbfDefusion, a novel all-in-one image restoration framework that utilizes visual instruction-guided degradation diffusion.<n>We show that Defusion outperforms state-of-the-art methods across diverse image restoration tasks, including complex and real-world degradations.
- Score: 29.910376294021052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image restoration tasks like deblurring, denoising, and dehazing usually need distinct models for each degradation type, restricting their generalization in real-world scenarios with mixed or unknown degradations. In this work, we propose \textbf{Defusion}, a novel all-in-one image restoration framework that utilizes visual instruction-guided degradation diffusion. Unlike existing methods that rely on task-specific models or ambiguous text-based priors, Defusion constructs explicit \textbf{visual instructions} that align with the visual degradation patterns. These instructions are grounded by applying degradations to standardized visual elements, capturing intrinsic degradation features while agnostic to image semantics. Defusion then uses these visual instructions to guide a diffusion-based model that operates directly in the degradation space, where it reconstructs high-quality images by denoising the degradation effects with enhanced stability and generalizability. Comprehensive experiments demonstrate that Defusion outperforms state-of-the-art methods across diverse image restoration tasks, including complex and real-world degradations.
Related papers
- UniRes: Universal Image Restoration for Complex Degradations [53.74404005987783]
Real-world image restoration is hampered by diverse degradations stemming from varying capture conditions, capture devices and post-processing pipelines.<n>A simple yet flexible diffusionbased framework, named UniRes, is proposed to address such degradations in an end-to-end manner.<n>Our proposed method is evaluated on both complex-degradation and single-degradation image restoration datasets.
arXiv Detail & Related papers (2025-06-05T21:25:39Z) - Restoring Real-World Images with an Internal Detail Enhancement Diffusion Model [9.520471615470267]
Restoring real-world degraded images, such as old photographs or low-resolution images, presents a significant challenge.<n>Recent data-driven approaches have struggled with achieving high-fidelity restoration and providing object-level control over colorization.<n>We propose an internal detail-preserving diffusion model for high-fidelity restoration of real-world degraded images.
arXiv Detail & Related papers (2025-05-24T12:32:53Z) - AllRestorer: All-in-One Transformer for Image Restoration under Composite Degradations [52.076067325999226]
We propose a novel Transformer-based restoration framework, AllRestorer.
AllRestorer adaptively considers all image impairments, thereby avoiding errors from scene descriptor misdirection.
We show that AllRestorer achieves a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset.
arXiv Detail & Related papers (2024-11-16T05:30:55Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
arXiv Detail & Related papers (2024-07-05T16:27:00Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - DaLPSR: Leverage Degradation-Aligned Language Prompt for Real-World Image Super-Resolution [19.33582308829547]
This paper proposes to leverage degradation-aligned language prompt for accurate, fine-grained, and high-fidelity image restoration.
The proposed method achieves a new state-of-the-art perceptual quality level.
arXiv Detail & Related papers (2024-06-24T09:30:36Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
We propose an adaptive all-in-one image restoration network based on frequency mining and modulation.
Our approach is motivated by the observation that different degradation types impact the image content on different frequency subbands.
The proposed model achieves adaptive reconstruction by accentuating the informative frequency subbands according to different input degradations.
arXiv Detail & Related papers (2024-03-21T17:58:14Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
We propose a novel All-in-one Multi-degradation Image Restoration Network (AMIRNet)
AMIRNet learns a degradation representation for unknown degraded images by progressively constructing a tree structure through clustering.
This tree-structured representation explicitly reflects the consistency and discrepancy of various distortions, providing a specific clue for image restoration.
arXiv Detail & Related papers (2023-08-06T04:51:41Z) - PromptIR: Prompting for All-in-One Blind Image Restoration [64.02374293256001]
We present a prompt-based learning approach, PromptIR, for All-In-One image restoration.
Our method uses prompts to encode degradation-specific information, which is then used to dynamically guide the restoration network.
PromptIR offers a generic and efficient plugin module with few lightweight prompts.
arXiv Detail & Related papers (2023-06-22T17:59:52Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.