論文の概要: A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
- arxiv url: http://arxiv.org/abs/2506.17018v1
- Date: Fri, 20 Jun 2025 14:15:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.480843
- Title: A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
- Title(参考訳): 状態空間モデルを用いた有効寿命推定のための量子回帰手法
- Authors: Davide Frizzo, Francesco Borsatti, Gian Antonio Susto,
- Abstract要約: 本稿では,状態空間モデル(SSM)を利用したRUL推定手法を提案する。
モデルの不確実性に対処するため、SQR(Simmoultaneous Quantile Regression)がSSMに統合され、複数の量子推定が可能となる。
その結果、SSMモデルの精度と計算効率が向上し、高い産業応用の可能性を示している。
- 参考スコア(独自算出の注目度): 4.659033572014701
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predictive Maintenance (PdM) is pivotal in Industry 4.0 and 5.0, proactively enhancing efficiency through accurate equipment Remaining Useful Life (RUL) prediction, thus optimizing maintenance scheduling and reducing unexpected failures and premature interventions. This paper introduces a novel RUL estimation approach leveraging State Space Models (SSM) for efficient long-term sequence modeling. To handle model uncertainty, Simoultaneous Quantile Regression (SQR) is integrated into the SSM, enabling multiple quantile estimations. The proposed method is benchmarked against traditional sequence modelling techniques (LSTM, Transformer, Informer) using the C-MAPSS dataset. Results demonstrate superior accuracy and computational efficiency of SSM models, underscoring their potential for high-stakes industrial applications.
- Abstract(参考訳): 予測保守(PdM)は、産業4.0と5.0において重要であり、正確な機器による効率を積極的に向上し、メンテナンスのスケジューリングを最適化し、予期せぬ失敗と早期介入を減らす。
本稿では,状態空間モデル(SSM)を利用したRUL推定手法を提案する。
モデルの不確実性に対処するため、SQR(Simmoultaneous Quantile Regression)がSSMに統合され、複数の量子推定が可能となる。
C-MAPSSデータセットを用いて従来のシーケンスモデリング手法(LSTM, Transformer, Informer)と比較した。
その結果、SSMモデルの精度と計算効率が向上し、高い産業応用の可能性を示している。
関連論文リスト
- WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training [64.0932926819307]
本稿では,学習速度減衰とモデルマージの正式な関係を確立するフレームワークであるWarmup-Stable and Merge(WSM)を紹介する。
WSMは様々な崩壊戦略をエミュレートするための統一された理論基盤を提供する。
私たちのフレームワークは、複数のベンチマークで広く採用されているWarmup-Stable-Decay(WSD)アプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-07-23T16:02:06Z) - Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
逐次的神経後部推定(ASNPE)を導入する。
ASNPEは、シミュレーションパラメータ候補の効用を基礎となる確率モデルに推定するために、推論ループにアクティブな学習スキームをもたらす。
提案手法は,大規模実世界の交通ネットワークにおいて,高度に調整されたベンチマークと最先端の後方推定手法より優れる。
論文 参考訳(メタデータ) (2024-12-07T08:57:26Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
本稿では,大言語モデル(LLM)をRUL予測に用いる革新的な回帰フレームワークを提案する。
ターボファンエンジンのRUL予測タスクの実験では、提案モデルが最先端(SOTA)法を超越していることが示されている。
微調整のための最小限のターゲットドメインデータでは、モデルは完全なターゲットドメインデータに基づいて訓練されたSOTAメソッドよりも優れている。
論文 参考訳(メタデータ) (2024-10-04T04:21:53Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
我々は,累積モデル組合せ (AMC) という解を提案する。
AMCは一般的な手法であり、モデルやデータ特性に応じてそれぞれ独自の利点を持ついくつかの事例を提案する。
論文 参考訳(メタデータ) (2023-05-06T20:56:20Z) - Multi-Dimensional Self Attention based Approach for Remaining Useful
Life Estimation [0.17205106391379021]
RUL(Remaining Useful Life)推定は、予後・健康管理(PHM)において重要な役割を担っている。
本稿では,IIoTシナリオにおけるマルチセンサデバイスのための生活予測モデルについて検討する。
本稿では,RUL推定のためのデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2022-12-12T08:50:27Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
残りの設備の実用寿命(RUL)は、現在の時刻と故障までの期間として定義される。
マルチ層パーセプトロンと長期メモリ層(LSTM)に基づくエンドツーエンドのディープラーニングモデルを提案し、RULを予測する。
提案するエンド・ツー・エンドのモデルがこのような優れた結果を達成し、他のディープラーニングや最先端の手法と比較する方法について論じる。
論文 参考訳(メタデータ) (2021-04-11T16:45:18Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。