A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
- URL: http://arxiv.org/abs/2506.17018v1
- Date: Fri, 20 Jun 2025 14:15:55 GMT
- Title: A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
- Authors: Davide Frizzo, Francesco Borsatti, Gian Antonio Susto,
- Abstract summary: This paper introduces a novel RUL estimation approach leveraging State Space Models (SSM) for efficient long-term sequence modeling.<n>To handle model uncertainty, Simoultaneous Quantile Regression (SQR) is integrated into the SSM, enabling multiple quantile estimations.<n>Results demonstrate superior accuracy and computational efficiency of SSM models, underscoring their potential for high-stakes industrial applications.
- Score: 4.659033572014701
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predictive Maintenance (PdM) is pivotal in Industry 4.0 and 5.0, proactively enhancing efficiency through accurate equipment Remaining Useful Life (RUL) prediction, thus optimizing maintenance scheduling and reducing unexpected failures and premature interventions. This paper introduces a novel RUL estimation approach leveraging State Space Models (SSM) for efficient long-term sequence modeling. To handle model uncertainty, Simoultaneous Quantile Regression (SQR) is integrated into the SSM, enabling multiple quantile estimations. The proposed method is benchmarked against traditional sequence modelling techniques (LSTM, Transformer, Informer) using the C-MAPSS dataset. Results demonstrate superior accuracy and computational efficiency of SSM models, underscoring their potential for high-stakes industrial applications.
Related papers
- WSM: Decay-Free Learning Rate Schedule via Checkpoint Merging for LLM Pre-training [64.0932926819307]
We present Warmup-Stable and Merge (WSM), a framework that establishes a formal connection between learning rate decay and model merging.<n>WSM provides a unified theoretical foundation for emulating various decay strategies.<n>Our framework consistently outperforms the widely-adopted Warmup-Stable-Decay (WSD) approach across multiple benchmarks.
arXiv Detail & Related papers (2025-07-23T16:02:06Z) - Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference [12.019504660711231]
We introduce sequential neural posterior estimation (ASNPE)<n>ASNPE brings an active learning scheme into the inference loop to estimate the utility of simulation parameter candidates to the underlying probabilistic model.<n>Our method outperforms well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-scale real-world traffic network.
arXiv Detail & Related papers (2024-12-07T08:57:26Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.<n>We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Remaining Useful Life Prediction: A Study on Multidimensional Industrial Signal Processing and Efficient Transfer Learning Based on Large Language Models [6.118896920507198]
This paper introduces an innovative regression framework utilizing large language models (LLMs) for RUL prediction.
Experiments on the Turbofan engine's RUL prediction task show that the proposed model surpasses state-of-the-art (SOTA) methods.
With minimal target domain data for fine-tuning, the model outperforms SOTA methods trained on full target domain data.
arXiv Detail & Related papers (2024-10-04T04:21:53Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
We propose a solution called Accumulated Model Combination (AMC)
AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties.
arXiv Detail & Related papers (2023-05-06T20:56:20Z) - Multi-Dimensional Self Attention based Approach for Remaining Useful
Life Estimation [0.17205106391379021]
Remaining Useful Life (RUL) estimation plays a critical role in Prognostics and Health Management (PHM)
This paper carries out research into the remaining useful life prediction model for multi-sensor devices in the IIoT scenario.
A data-driven approach for RUL estimation is proposed in this paper.
arXiv Detail & Related papers (2022-12-12T08:50:27Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.