DreamCube: 3D Panorama Generation via Multi-plane Synchronization
- URL: http://arxiv.org/abs/2506.17206v1
- Date: Fri, 20 Jun 2025 17:55:06 GMT
- Title: DreamCube: 3D Panorama Generation via Multi-plane Synchronization
- Authors: Yukun Huang, Yanning Zhou, Jianan Wang, Kaiyi Huang, Xihui Liu,
- Abstract summary: 3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content.<n>Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data.<n>In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain.
- Score: 17.690754213112108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
Related papers
- CDI3D: Cross-guided Dense-view Interpolation for 3D Reconstruction [25.468907201804093]
Large Reconstruction Models (LRMs) have shown great promise in leveraging multi-view images generated by 2D diffusion models to extract 3D content.<n>However, 2D diffusion models often struggle to produce dense images with strong multi-view consistency.<n>We present CDI3D, a feed-forward framework designed for efficient, high-quality image-to-3D generation with view.
arXiv Detail & Related papers (2025-03-11T03:08:43Z) - DiffPano: Scalable and Consistent Text to Panorama Generation with Spherical Epipolar-Aware Diffusion [60.45000652592418]
We propose a novel text-driven panoramic generation framework, DiffPano, to achieve scalable, consistent, and diverse panoramic scene generation.
We show that DiffPano can generate consistent, diverse panoramic images with given unseen text descriptions and camera poses.
arXiv Detail & Related papers (2024-10-31T17:57:02Z) - Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
arXiv Detail & Related papers (2024-09-11T17:58:57Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
We present Magic123, a two-stage coarse-to-fine approach for high-quality, textured 3D meshes from a single unposed image.
In the first stage, we optimize a neural radiance field to produce a coarse geometry.
In the second stage, we adopt a memory-efficient differentiable mesh representation to yield a high-resolution mesh with a visually appealing texture.
arXiv Detail & Related papers (2023-06-30T17:59:08Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
This paper presents an innovative View Alignment GAN (VA-GAN) that composes new images by embedding 3D models into 2D background images realistically and automatically.
VA-GAN consists of a texture generator and a differential discriminator that are inter-connected and end-to-end trainable.
arXiv Detail & Related papers (2020-07-14T14:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.