MS-TVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Dynamic Convolution
- URL: http://arxiv.org/abs/2506.17253v2
- Date: Wed, 25 Jun 2025 07:55:20 GMT
- Title: MS-TVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Dynamic Convolution
- Authors: Chenghan Li, Mingchen Li, Yipu Liao, Ruisheng Diao,
- Abstract summary: We propose MS-TVNet, a multi-scale 3D dynamic convolutional neural network.<n>Our findings highlight the effectiveness of leveraging convolutional networks for capturing complex temporal patterns.
- Score: 6.712251433139411
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long-term time series prediction has predominantly relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this gap, we introduce a novel multi-scale time series reshape module, which effectively captures the relationships among multi-period patches and variable dependencies. Building upon this module, we propose MS-TVNet, a multi-scale 3D dynamic convolutional neural network. Through comprehensive evaluations on diverse datasets, MS-TVNet demonstrates superior performance compared to baseline models, achieving state-of-the-art (SOTA) results in long-term time series prediction. Our findings highlight the effectiveness of leveraging convolutional networks for capturing complex temporal patterns, suggesting a promising direction for future research in this field.The code is realsed on https://github.com/Curyyfaust/TVNet.
Related papers
- TimeCF: A TimeMixer-Based Model with adaptive Convolution and Sharpness-Aware Minimization Frequency Domain Loss for long-term time seris forecasting [5.032613143415414]
We propose a deep learning model TimeCF for long-term time series forecasting based on the TimeMixer.<n>TimeCF decomposes the original time series into sequences of different scales.<n>Different scales are aggregated through a Feed-Forward Network.
arXiv Detail & Related papers (2025-05-23T06:39:20Z) - Differential Machine Learning for Time Series Prediction [1.3812010983144802]
We propose a novel approach that enhances neural network predictions through differential learning.<n>We develop a differential long short-term memory (Diff-LSTM) network that uses a shared LSTM cell to simultaneously process both data streams.
arXiv Detail & Related papers (2025-03-05T09:36:57Z) - ForecastGrapher: Redefining Multivariate Time Series Forecasting with Graph Neural Networks [9.006068771300377]
We present ForecastGrapher, a framework for capturing the intricate temporal dynamics and inter-series correlations.
Our approach is underpinned by three pivotal steps: generating custom node embeddings to reflect the temporal variations within each series; constructing an adaptive adjacency matrix to encode the inter-series correlations; and thirdly, augmenting the GNNs' expressive power by diversifying the node feature distribution.
arXiv Detail & Related papers (2024-05-28T10:40:20Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multi-scale Transformer Pyramid Networks for Multivariate Time Series
Forecasting [8.739572744117634]
We introduce a dimension invariant embedding technique that captures short-term temporal dependencies.
We present a novel Multi-scale Transformer Pyramid Network (MTPNet) specifically designed to capture temporal dependencies at multiple unconstrained scales.
arXiv Detail & Related papers (2023-08-23T06:40:05Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflow is a novel model for networks of time series that influence each other.
It embodies three key ideas: a recurrent neural network to obtain node embeddings that depend on time, the aggregation of the flow of influence from neighboring nodes with multi-head attention, and the multi-layer decomposition of time series.
We show that Radflow can learn different trends and seasonal patterns, that it is robust to missing nodes and edges, and that correlated temporal patterns among network neighbors reflect influence strength.
arXiv Detail & Related papers (2021-02-15T00:57:28Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.